概念
AVL树可以定义为高度平衡二叉搜索树,其中每个节点与平衡因子相关联,该平衡因子通过从其左子树的子树中减去其右子树的高度来计算。AVL树是由GM Adelson - Velsky和EM Landis于1962年发明的。为了纪念其发明者,这树结构被命名为AVL。
定义: 任意节点左右子树相差高度不超过1的树
优点: 查找、插入和删除在平均和最坏情况下的时间复杂度都是O(nlogn)
过程
增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡
左旋(RR)
插入的元素在不平衡的节点的右侧的右侧
要插入9
(1)节点的右孩子替代此节点位置 (2)右孩子的左子树变为该节点的右子树 (3)节点本身变为右孩子的左子树
右旋(LL)
插入的元素在不平衡结点的左侧的左侧
现需插入一个新的节点1,直接插入则会打破平衡,此时不平衡点出现在6,则需要进行左旋调整
(1)节点的左孩子替代此节点位置 (2)左孩子的右子树变为该节点的左子树 (3)节点本身变为左孩子的右子树
左右旋转(RL)
插入的元素在不平衡的节点的右侧的左侧
插入5
先对7左旋
对4右旋
右左旋转(LR)
插入的元素在不平衡的节点的左侧的右侧
插入6
先对4进行右旋
再对7进行左旋
代码实现
public class AVLTreeMap<K extends Comparable<K>, V> implements Map<K, V> {
private Node node;
private class Node {
public K key;
public V value;
public Node left;
public Node right;
public int height;
public Node(K key, V value) {
this.key = key;
this.value = value;
this.height = 1;
}
}
private Node root;
private int size;
public AVLTreeMap() {
this.root = null;
this.size = 0;
}
/**
* 右旋转
* @param node 需要旋转的节点
* @return 旋转后节点
*/
private Node rightRotate(Node node) {
//(1)节点的左孩子替代此节点位置
Node leftChild = node.left;
// (2)左孩子的右子树变为该节点的左子树
Node lCR = leftChild.right;
node.left = lCR;
// (3)节点本身变为左孩子的右子树
leftChild.right = node;
// 对高度重新赋值
leftChild.height = Math.max(getHeight(leftChild.left), getHeight(leftChild.right)) + 1;
node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1;
return leftChild;
}
/**
* 左旋转
* @param node 需要旋转的节点
* @return 旋转后节点
*/
private Node leftRotate(Node node) {
// (1)节点的右孩子替代此节点位置
Node rightChild = node.right;
// (2)右孩子的左子树变为该节点的右子树
Node rCL = rightChild.left;
node.right = rCL;
// (3)节点本身变为右孩子的左子树
rightChild.left = node;
rightChild.height = Math.max(getHeight(rightChild.left), getHeight(rightChild.right)) + 1;
node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1;
return rightChild;
}
/**
* 获取高度
* @param node 节点
* @return 节点高度
*/
private int getHeight(Node node) {
if (node == null) {
return 0;
}
return node.height;
}
@Override
public void put(K key, V value) {
root = put(root, key, value);
}
private Node put(Node node, K key, V value) {
if (node == null) {
size++;
return new Node(key, value);
}
// 二分查找key是否存在
if (key.compareTo(node.key) < 0) {
node.left = put(node.left, key, value);
} else if (key.compareTo(node.key) > 0) {
node.right = put(node.right, key, value);
} else {
// 存在key 修改value
node.value = value;
}
// 更新node高度
node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1;
// 判断node是否平衡
// 获取左右高度差值
int balanceFactory = getBalanceFactory(node);
// 判断需要旋转的情况
if (balanceFactory > 1 && getBalanceFactory(node.left) >= 0) {
// 左左
return rightRotate(node);
}
if (balanceFactory < -1 && getBalanceFactory(node.right) < 0) {
// 右右·
return leftRotate(node);
}
if (balanceFactory > 1 && getBalanceFactory(node.left) < 0) {
// 左右
node.left = leftRotate(node.left);
return rightRotate(node);
}
if (balanceFactory < -1 && getBalanceFactory(node.right) >= 0) {
// 右左
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
/**
* 判断左右差值
* @param node 节点
* @return 节点差值
*/
private int getBalanceFactory(Node node) {
if (node == null) {
return 0;
}
return getHeight(node.left) - getHeight(node.right);
}
@Override
public V remove(K key) {
Node delNode = getNode(root, key);
if (delNode != null) {
root = remove(root, key);
return delNode.value;
}
return null;
}
private Node remove(Node node, K key) {
if (node == null) {
return null;
}
Node retNode = null;
if (key.compareTo(node.key) < 0) {
node.left = remove(node.left, key);
retNode = node;
} else if (key.compareTo(node.key) > 0) {
node.right = remove(node.right, key);
retNode = node;
} else {
// 找到了
if (node.left == null) {
Node rightNode = node.right;
node.right = null;
size--;
retNode = rightNode;
} else if (node.right == null) {
Node leftNode = node.left;
node.left = null;
size--;
retNode = leftNode;
} else {
Node successor = minimum(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = null;
node.right = null;
retNode = successor;
}
}
if (retNode == null) {
return retNode;
}
retNode.height = Math.max(getHeight(retNode.left), getHeight(retNode.right)) + 1;
int balanceFactory = getBalanceFactory(retNode);
if (balanceFactory > 1 && getBalanceFactory(retNode.left) >= 0) {
return rightRotate(retNode);
}
if (balanceFactory < -1 && getBalanceFactory(retNode.right) < 0) {
return leftRotate(retNode);
}
if (balanceFactory > 1 && getBalanceFactory(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
if (balanceFactory < -1 && getBalanceFactory(retNode.right) >= 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
/**
* 获取节点下最小元素
* @param node 节点
* @return 节点下最小节点
*/
private Node minimum(Node node) {
if (node.left == null) {
return node;
}
return minimum(node.left);
}
private Node getNode(Node node, K key) {
if (node == null) {
return null;
}
if (key.compareTo(node.key) < 0) {
return getNode(node.left, key);
} else if (key.compareTo(node.key) > 0) {
return getNode(node.right, key);
} else {
return node;
}
}
@Override
public boolean contains(K key) {
return getNode(root, key) != null;
}
@Override
public V get(K key) {
Node node = getNode(root, key);
return node == null ? null : node.value;
}
@Override
public void set(K key, V value) {
Node node = getNode(root, key);
if (node == null) {
throw new IllegalArgumentException("entry is not exist");
}
node.value = value;
}
@Override
public int size() {
return size;
}
@Override
public boolean isEmpty() {
return size == 0 && root == null;
}
@Override
public Set<K> keySet() {
TreeSet<K> set = new TreeSet<>();
inOrderKeySet(root, set);
return set;
}
private void inOrderKeySet(Node node, TreeSet<K> set) {
if (node == null) {
return;
}
inOrderKeySet(node.left, set);
set.add(node.key);
inOrderKeySet(node.right, set);
}
@Override
public List<V> values() {
LinkedList<V> list = new LinkedList<>();
inOrderValues(root, list);
return list;
}
private void inOrderValues(Node node, LinkedList<V> list) {
if (node == null) {
return;
}
inOrderValues(node.left, list);
list.add(node.value);
inOrderValues(node.right, list);
}
@Override
public Set<Entry<K, V>> entrySet() {
TreeSet<Entry<K, V>> set = new TreeSet<>();
inOrderEntrySet(root, set);
return set;
}
private void inOrderEntrySet(Node node, TreeSet<Entry<K, V>> set) {
if (node == null) {
return;
}
inOrderEntrySet(node.left, set);
set.add(new BSTEntry<>(node.key, node.value));
inOrderEntrySet(node.right, set);
}
private class BSTEntry<K extends Comparable<K>, V> implements Entry<K, V> {
private K key;
private V value;
public BSTEntry(K key, V value) {
this.key = key;
this.value = value;
}
@Override
public K getK() {
return key;
}
@Override
public V getV() {
return value;
}
@Override
public int compareTo(Entry<K, V> o) {
return key.compareTo(o.getK());
}
}
}