不同场景下的部署形态选型
一般说选型肯定离不开阶段。用到向量数据库的应用基本有这么几个阶段:
AI 应用的快速原型构建。比如你在做一个 AI 个人助手、一个小的搜索引擎原型、一个端到端的 RAG 原型,这类项目的迭代速度是很关键的,而且原型构建期不需要关心性能或者稳定性这样的指标。因此 Milvus Lite,或 Milvus Lite + Milvus Standalone 会是比较合适的选择。你可以在 notebook 结合 Milvus Lite 快速实现端到端功能搭建,以及面向效果的轻量化实验。
如果你同时也需要在规模大一些的数据集上验证效果,那再起一套 Milvus Standalone 是合适的。注意这里 Milvus Lite 和 Milvus Standalone 并不是独立的两部分,它们支持了一个简单的从笔记本到服务器的工作流:由于 Milvus Lite、Standalone、Distributed 共享一套客户端接口,同样的业务侧代码既可以使用本地数据进行原型开发,也可以链接到服务端进行大规模数据验证。同时 Standalone 支持多用户,一个敏捷开发小组可以使用一套 Milvus Standalone 服务进行协作或共享数据。
早期的生产部署。这里早期指的是项目上线早期,业务访问请求和数据还没有上量、项目还在寻找 Product-market-fit 的阶段。这个阶段你需要关心的仍然是业务效果和业务竞争力,而不是基础设施。因此 Milvus Standalone 是最合适的选择。对于在