昇思25天学习打卡营第19天|生成式-DCGAN生成漫画头像

news2024/11/15 4:46:33

打卡

目录

打卡

GAN基础原理

DCGAN原理

案例说明

数据集操作

数据准备

数据处理和增强

部分训练数据的展示

构造网络

生成器

生成器代码

​编辑

判别器

判别器代码

模型训练

训练代码

结果展示(3 epoch)

模型推理


GAN基础原理

原理介绍参考 GAN图像生成 。

DCGAN原理

DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层

判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。

生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量𝑧,输出是3x64x64的RGB图像。

Radford等人提出,论文:Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks

案例说明

目的:用动漫头像数据集来训练一个生成式对抗网络,使用该网络生成动漫头像图片。

数据集操作

数据准备

  • 使用的动漫头像数据集共有70,171张动漫头像图片,图片大小均为96*96。
  • 数据来源:https://download.mindspore.cn/dataset/Faces/faces.zip
from download import download

url = "https://download.mindspore.cn/dataset/Faces/faces.zip"

path = download(url, "./faces", kind="zip", replace=True)

数据处理和增强

如尺度变换、裁剪、格式变换。

import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import matplotlib.pyplot as plt

batch_size = 128          # 批量大小
image_size = 64           # 训练图像空间大小
nc = 3                    # 图像彩色通道数
nz = 100                  # 隐向量的长度
ngf = 64                  # 特征图在生成器中的大小
ndf = 64                  # 特征图在判别器中的大小
num_epochs = 3            # 训练周期数
lr = 0.0002               # 学习率
beta1 = 0.5               # Adam优化器的beta1超参数


def create_dataset_imagenet(dataset_path):
    """数据加载"""
    dataset = ds.ImageFolderDataset(dataset_path,
                                    num_parallel_workers=4,
                                    shuffle=True,
                                    decode=True)

    # 数据增强操作
    transforms = [
        vision.Resize(image_size),
        vision.CenterCrop(image_size),
        vision.HWC2CHW(),
        lambda x: ((x / 255).astype("float32"))
    ]

    # 数据映射操作
    dataset = dataset.project('image')
    dataset = dataset.map(transforms, 'image')

    # 批量操作
    dataset = dataset.batch(batch_size)
    return dataset


def plot_data(data):
    # 可视化部分训练数据
    plt.figure(figsize=(10, 3), dpi=140)
    for i, image in enumerate(data[0][:30], 1):
        plt.subplot(3, 10, i)
        plt.axis("off")
        plt.imshow(image.transpose(1, 2, 0))
    plt.show()



dataset = create_dataset_imagenet('./faces')

## 可视化部分训练数据。
sample_data = next(dataset.create_tuple_iterator(output_numpy=True))
plot_data(sample_data)
部分训练数据的展示

构造网络

按照DCGAN论文中的描述,所有模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。

生成器

生成器 G 的功能:将隐向量z映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。

通过输入部分中设置的nzngfnc来影响代码中的生成器结构。nz是隐向量z的长度,ngf与通过生成器传播的特征图的大小有关,nc是输出图像中的通道数。

生成器代码
import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normal

weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class Generator(nn.Cell):
    """DCGAN网络生成器"""

    def __init__(self):
        super(Generator, self).__init__()
        self.generator = nn.SequentialCell(
            nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.Tanh()
            )

    def construct(self, x):
        return self.generator(x)

generator = Generator()

判别器

  • 判别器D:一个二分类网络模型,输出判定该图像为真实图的概率。通过一系列的Conv2dBatchNorm2dLeakyReLU层对其进行处理,最后通过Sigmoid激活函数得到最终概率。
  • DCGAN论文提到,使用卷积而不是通过池化来进行下采样可以让网络学习自己的池化特征。
判别器代码
class Discriminator(nn.Cell):
    """DCGAN网络判别器"""

    def __init__(self):
        super(Discriminator, self).__init__()
        self.discriminator = nn.SequentialCell(
            nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),
            )
        self.adv_layer = nn.Sigmoid()

    def construct(self, x):
        out = self.discriminator(x)
        out = out.reshape(out.shape[0], -1)
        return self.adv_layer(out)

discriminator = Discriminator()

模型训练

  • 使用MindSpore中定义的二进制交叉熵损失函数BCELoss。
  • 设置了两个单独的优化器,一个用于D,另一个用于G。这两个都是lr=0.0002 和 beta1 = 0.5 的Adam优化器。
  • 训练分为两个主要部分:训练判别器和训练生成器。
    • 训练判别器的目的是最大程度地提高判别图像真伪的概率。按照Good fellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)) 的值。
    • 如DCGAN论文所述,我们希望通过最小化𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))) 来训练生成器,以产生更好的虚假图像。
    • 在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计,将fixed_noise批量推送到生成器中,以直观地跟踪G的训练进度。

训练代码

# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')

# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')

def generator_forward(real_imgs, valid):
    # 将噪声采样为发生器的输入
    z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))

    # 生成一批图像
    gen_imgs = generator(z)

    # 损失衡量发生器绕过判别器的能力
    g_loss = adversarial_loss(discriminator(gen_imgs), valid)

    return g_loss, gen_imgs

def discriminator_forward(real_imgs, gen_imgs, valid, fake):
    # 衡量鉴别器从生成的样本中对真实样本进行分类的能力
    real_loss = adversarial_loss(discriminator(real_imgs), valid)
    fake_loss = adversarial_loss(discriminator(gen_imgs), fake)
    d_loss = (real_loss + fake_loss) / 2
    return d_loss

grad_generator_fn = ms.value_and_grad(generator_forward, None,
                                      optimizer_G.parameters,
                                      has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,
                                          optimizer_D.parameters)

@ms.jit
def train_step(imgs):
    valid = ops.ones((imgs.shape[0], 1), mindspore.float32)
    fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)

    (g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)
    optimizer_G(g_grads)
    d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)
    optimizer_D(d_grads)

    return g_loss, d_loss, gen_imgs


import mindspore

G_losses = []
D_losses = []
image_list = []


### 训练步骤
total = dataset.get_dataset_size()
for epoch in range(num_epochs):
    generator.set_train()
    discriminator.set_train()
    # 为每轮训练读入数据
    for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()):
        g_loss, d_loss, gen_imgs = train_step(imgs)
        if i % 100 == 0 or i == total - 1:
            # 输出训练记录
            print('[%2d/%d][%3d/%d]   Loss_D:%7.4f  Loss_G:%7.4f' % (
                epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))
        D_losses.append(d_loss.asnumpy())
        G_losses.append(g_loss.asnumpy())

    # 每个epoch结束后,使用生成器生成一组图片
    generator.set_train(False)
    fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
    img = generator(fixed_noise)
    image_list.append(img.transpose(0, 2, 3, 1).asnumpy())

    # 保存网络模型参数为ckpt文件
    mindspore.save_checkpoint(generator, "./generator.ckpt")
    mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")


## 描绘D和G损失与训练迭代的关系图
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G", color='blue')
plt.plot(D_losses, label="D", color='orange')
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

## 可视化训练过程中通过隐向量fixed_noise生成的图像。
import matplotlib.pyplot as plt
import matplotlib.animation as animation

def showGif(image_list):
    show_list = []
    fig = plt.figure(figsize=(8, 3), dpi=120)
    for epoch in range(len(image_list)):
        images = []
        for i in range(3):
            row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)
            images.append(row)
        img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
        plt.axis("off")
        show_list.append([plt.imshow(img)])

    ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
    ani.save('./dcgan.gif', writer='pillow', fps=1)

showGif(image_list)

训练过程图示:

结果展示(3 epoch)

1、描绘DG损失与训练迭代的关系图。

2、可视化训练过程中通过隐向量fixed_noise生成的图像。

随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当num_epochs达到50以上时,生成的动漫头像图片与数据集中的较为相似。

模型推理

通过加载生成器网络模型参数文件来生成图。

# 从文件中获取模型参数并加载到网络中
mindspore.load_checkpoint("./generator.ckpt", generator)

fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()

fig = plt.figure(figsize=(8, 3), dpi=120)
images = []
for i in range(3):
    images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
plt.imshow(img)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1945981.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AV1技术学习:Loop Restoration Filter

环路恢复滤波器(restoration filter)适用于64 64、128 128 或 256 256 像素块单元,称为 loop restoration units (LRUs)。每个单元可以独立选择是否跳过滤波、使用维纳滤波器(Wiener filter)或使用自导滤波器&#…

AM62x和rk3568的异同点

AM62x 和 RK3568 是两款不同的处理器,分别来自 Texas Instruments(TI)和 Rockchip。它们在设计目标、架构、性能和应用领域等方面存在一些异同。以下是这两款处理器的对比: 1. 基本架构 AM62x: 架构:基于…

【云原生】Kubernetes 中的 PV 和 PVC 介绍、原理、用法及实战案例分析

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

CRM客户管理系统是什么?如何利用CRM盘活老客户?

人与人之间的差距,不仅在于业务能力的高低,更在于如何高效地管理客户、建立深厚的客户关系。在这个“内卷化”严重的时代,借助工具来管理客户成为必不可少的流程。如果你保持怀疑态度,那我们先来聊聊。 客户管理是什么&#xff1…

HormonyOs之 路由简单跳转

Navigation路由相关的操作都是基于页面栈NavPathStack提供的方法进行,每个Navigation都需要创建并传入一个NavPathStack对象,用于管理页面。主要涉及页面跳转、页面返回、页面替换、页面删除、参数获取、路由拦截等功能。 Entry Component struct Index …

探索 Electron:快捷键与剪切板操作

Electron是一个开源的桌面应用程序开发框架,它允许开发者使用Web技术(如 HTML、CSS 和 JavaScript)构建跨平台的桌面应用程序,它的出现极大地简化了桌面应用程序的开发流程,让更多的开发者能够利用已有的 Web 开发技能…

Mysql9安装

目录 一、下载mysql 二、安装 三、配置mysql环境变量 四、mysql初始化和启动 1.以管理员身份运行cmd 2.cd到mysql的安装目录 3.初始化mysql的数据库 4.为Windows系统安装MySQL服务 5.查看一下名为mysql的服务: 6.启动MySQL服务 五、附录 1.系统变量还在&…

grafana对接zabbix数据展示

目录 1、初始化、安装grafana 2、浏览器访问 3、安装zabbix 4、zabbix数据对接grafana 5、如何导入模板? ① 设置键值 ② 在zabbix web端完成自定义监控项 ③ garafana里添加nginx上面的的三个监控项 6、如何自定义监控项? 以下实验沿用上一篇z…

arm环境下构建Flink的Docker镜像

准备工作 资源准备 按需下载 flink,我的是1.17.2版本。官方说1.13版本之后的安装包兼容了arm架构,所以直接下载就行。 如需要cdc组件,提前下载好。 服务器准备 可在某云上购买arm服务器,2c/4g即可,按量付费。 带宽…

2024datawhale电力需求预测挑战赛

电力需求预测挑战赛 比赛链接:https://challenge.xfyun.cn/topic/info?typeelectricity-demand&optionssgy&chdw24_uGS8Gs 学习链接:https://datawhaler.feishu.cn/wiki/CuhBw9vBaiG1nJklIPkcRhqVnmk 一句话介绍赛题任务可以这样理解赛题&am…

【Vue实战教程】之Vuex状态管理详解

Vuex状态管理 1 Vuex简介 1.1 什么是Vuex Vuex是一个专为Vue.js应用程序开发的状态管理工具。它采用了集中式存储管理应用的所有的状态,并以相应的规则保证状态以一种可预测的方式发生变化。 简单来说,Vuex是一个适用于在Vue项目开发时使用的状态管理…

Nginx反向代理概述

正向代理与反向代理概述 正向代理: 定义:正向代理位于客户端和目标服务器之间,客户端的请求首先发送到代理服务器,然后由代理服务器转发到目标服务器,最后将目标服务器的响应返回给客户端。 作用:正向代理…

逻辑回归推导

逻辑回归既可以看作是回归算法,也可以看做是分类算法。通常作为分类算法使用,只可以解决二分类问题。 在上述平面中,每个颜色代表一个类别,即有4个类别 将红色的做为一个类别,其他三个类别都统称为其他类别&#xff0…

javascript 的上下文与作用域

目录 1. 初步了解 上下文(context)2. 全局上下文(global context)3. 上下文栈 (context stack)4. 作用域链( scope chain)5. 作用域(scope)6. 作用域链增强7. 变量声明7.1 var 声明变量7.2 let 声明变量7.3 const 常量声明 8. 标识符查找总结 带着疑问去…

D3.高精度

1.分类情况 AB、A-B、A*a、A/b A和B指的是超大超长整数&#xff0c;长度<1e6; a的值<10000&#xff1b; 2.大整数的存储 int 变量肯定是存不了这么大的数的&#xff0c;做法是将大整数先存到string字符串&#xff0c;再使用字符串的访问方式&#xff0c;将每一位数存到…

C++树形结构(3 树的中心、重心)

目录 一.树的中心&#xff1a; 1.树的概念&#xff1a; 2.树的性质&#xff1a; 性质1&#xff1a; 性质2&#xff1a; 3.树的中心求解&#xff1a; 4.例题&#xff1a; 二.树的重心&#xff1a; 1.基础概念&#xff1a; 2.求解方法&#xff1a; 3.例题&#xff1a;…

运筹学笔记

计算的时间问题&#xff01;计算机解决了计算量的问题&#xff01; 计算机的发展对运筹学研究起到了极大的促进作用。 运筹学的一个特征之一是它常常会考虑寻求问题模型的最佳解决方案&#xff08;称为最优解&#xff09;。 没有人能成为运筹学所有方面的专家。 分析学越来越流…

反弹shell的方式——之NC反弹shell

反弹shell是指在攻击机监听某个端口&#xff0c;然后通过目标连接攻击机监听的端口&#xff0c;在攻击机反弹得到目标机的shell。通常在目标网络有防火墙或者其他因素限制&#xff0c;导致无法持续控制目标&#xff0c;或者执行命令受阻等情况时需要进行反弹shell 常见的反弹s…

Null和 Undefined 两者区别?

1、 Undefined 和 null 的 区 别 首 先 Undefined 和 Null 都 是 基 本 数 据 类 型 &#xff0c; 这 两 个 基 本 数 据 类 型 分 别 都 只 有 一 个 值 &#xff0c; 就 是 undefined 和 null。 2、undefined 代 表 的 含 义 是 未 定 义 &#xff0c; null 代 表 的 含 义 …

Python Flask入门到精通:详细教程和实战案例

前言 Flask是一个轻量级的Web框架&#xff0c;用于快速开发Web应用程序。它的设计理念是简洁、灵活和易于扩展&#xff0c;非常适合于从简单的单页应用到复杂的大型项目。通过Flask&#xff0c;可以创建各种Web应用程序&#xff0c;比如博客、电子商务网站、RESTful API等。 …