本文使用 TensorFlow 1.15 环境搭建深度神经网络(PINN)求解二维 Poisson 方程:
模型问题
− Δ u = f in Ω , u = g on Γ : = ∂ Ω . \begin{align} -\Delta u &= f \quad & \text{in } \Omega,\\ u & =g \quad & \text{on } \Gamma:=\partial \Omega. \end{align} −Δuu=f=gin Ω,on Γ:=∂Ω.
其中 Ω = [ X a , X b ] × [ Y a , Y b ] \Omega = [X_a,X_b]\times[Y_a,Y_b] Ω=[Xa,Xb]×[Ya,Yb] 是一个二维矩形区域, Δ u = u x x + u y y , g \Delta u = u_{xx}+u_{yy}, g Δu=uxx+uyy,g 是边界条件给定的函数,可以非零.
代码展现
二维PINN 与一维的整体框架是类似的,只是数据的维度升高了,完整代码及其注释如下:
# PINN 求解 2D Poisson 方程
import tensorflow as tf
print(tf.__version__)
import os
#tensorflow-intel automatically set the TF_ENABLE_ONEDNN_OPTS=1
#os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
# Here, TF_ENABLE_ONEDNN_OPTS=0 should be above import tensorflow as tf
import tensorflow as tf
import numpy as np
import time
import matplotlib.pyplot as plt
import scipy.io
import math
# 定义数据集类,用于生成训练所需的数据
class Dataset:
def __init__(self, x_range, y_range, N_res, N_bx, N_by, Nx, Ny, xa, xb, ya, yb):
self.x_range = x_range # x 轴范围
self.y_range = y_range # y 轴范围
self.N_res = N_res # 方程残差点数量
self.N_bx = N_bx # x 方向边界条件点数量
self.N_by = N_by # y 方向边界条件点数量
self.Nx = Nx # x 方向网格数量
self.Ny = Ny # y 方向网格数量
self.xa = xa # x 方向左边界
self.xb = xb # x 方向右边界
self.ya = ya # y 方向下边界
self.yb = yb # y 方向上边界
# 定义边界条件函数
# 可以求解非齐次 Dirichlet 边界条件
def bc(self, X_b):
U_bc = Exact(self.xa, self.xb, self.ya, self.yb)
u_bc = U_bc.u_exact(X_b)
return u_bc
# 生成数据:残差点和边界条件点
def build_data(self):
x0, x1 = self.x_range
y0, y1 = self.y_range
Xmin = np.hstack((x0, y0))
Xmax = np.hstack((x1, y1))
## 如果使用均匀网格,代码如下:
"""
x_ = np.linspace(x0, x1, self.Nx).reshape((-1, 1))
y_ = np.linspace(y0, y1, self.Ny).reshape((-1, 1))
x, y = np.meshgrid(x_, y_)
x = np.reshape(x, (-1, 1))
y = np.reshape(y, (-1, 1))
xy = np.hstack((x, y))
X_res_input = xy
"""
## 为方程生成随机残差点
x_res = x0 + (x1 - x0) * np.random.rand(self.N_res, 1)
y_res = y0 + (y1 - y0) * np.random.rand(self.N_res, 1)
X_res_input = np.hstack((x_res, y_res))
# 生成 x = xa, xb 的边界条件点
y_b = y0 + (y1 - y0) * np.random.rand(self.N_by, 1)
x_b0 = x0 * np.ones_like(y_b)
x_b1 = x1 * np.ones_like(y_b)
X_b0_input = np.hstack((x_b0, y_b))
X_b1_input = np.hstack((x_b1, y_b))
# 生成 y = ya, yb 的边界条件点
x_b = x0 + (x1 - x0) * np.random.rand(self.N_bx, 1)
y_b0 = y0 * np.ones_like(x_b)
y_b1 = y1 * np.ones_like(x_b)
Y_b0_input = np.hstack((x_b, y_b0))
Y_b1_input = np.hstack((x_b, y_b1))
return X_res_input, X_b0_input, X_b1_input, Y_b0_input, Y_b1_input, Xmin, Xmax
# 定义精确解类,用于计算精确解
class Exact:
def __init__(self, xa, xb, ya, yb):
self.xa = xa # x 方向左边界
self.xb = xb # x 方向右边界
self.ya = ya # y 方向下边界
self.yb = yb # y 方向上边界
# 精确解函数
def u_exact(self, X):
x = X[:, 0:1]
y = X[:, 1:2]
u = np.sin(2 * np.pi * x ) * np.sin(2 * np.pi * y )
return u
class Train:
def __init__(self, train_dict):
self.train_dict = train_dict # 训练数据
self.step = 0 # 训练步数
# 打印训练损失
def callback(self, loss_value):
self.step += 1
if self.step % 200 == 0:
print(f'Loss: {loss_value:.4e}')
# 使用 Adam 和 L-BFGS 优化器进行训练
def nntrain(self, sess, u_pred, loss, train_adam, train_lbfgs):
n = 0
max_steps = 1000
loss_threshold = 4.0e-4
current_loss = 1.0
while n < max_steps and current_loss > loss_threshold:
n += 1
u_, current_loss, _ = sess.run([u_pred, loss, train_adam], feed_dict=self.train_dict)
# 每2^n步打印一次损失并绘制结果
if math.isclose(math.fmod(math.log2(n), 1), 0, abs_tol=1e-9):
print(f'Steps: {n}, loss: {current_loss:.4e}')
train_lbfgs.minimize(sess, feed_dict=self.train_dict, fetches=[loss], loss_callback=self.callback)
class DNN:
def __init__(self, layer_sizes, Xmin, Xmax):
self.layer_sizes = layer_sizes # 每层的节点数
self.Xmin = Xmin # 输入范围最小值
self.Xmax = Xmax # 输入范围最大值
# 初始化神经网络的权重和偏置
def hyper_initial(self):
num_layers = len(self.layer_sizes)
weights = []
biases = []
for l in range(1, num_layers):
in_dim = self.layer_sizes[l-1]
out_dim = self.layer_sizes[l]
std = np.sqrt(2 / (in_dim + out_dim))
weight = tf.Variable(tf.random_normal(shape=[in_dim, out_dim], stddev=std))
bias = tf.Variable(tf.zeros(shape=[1, out_dim]))
weights.append(weight)
biases.append(bias)
return weights, biases
# 构建前馈神经网络
def fnn(self, X, weights, biases):
A = 2.0 * (X - self.Xmin) / (self.Xmax - self.Xmin) - 1.0 # 归一化输入
num_layers = len(weights)
for i in range(num_layers - 1):
A = tf.tanh(tf.add(tf.matmul(A, weights[i]), biases[i])) # 隐藏层激活函数
Y = tf.add(tf.matmul(A, weights[-1]), biases[-1]) # 输出层
return Y
# 构建用于求解 Poisson 方程的神经网络
def pdenn(self, x, y, weights, biases):
u = self.fnn(tf.concat([x, y], 1), weights, biases) # 前馈网络输出
u_x = tf.gradients(u, x)[0] # u 对 x 的一阶导数
u_xx = tf.gradients(u_x, x)[0] # u 对 x 的二阶导数
u_y = tf.gradients(u, y)[0] # u 对 y 的一阶导数
u_yy = tf.gradients(u_y, y)[0] # u 对 y 的二阶导数
# 源项函数
rhs_func = 8 * np.pi**2 * tf.sin(2 * np.pi * x ) * tf.sin(2 * np.pi * y )
# 残差项
residual = -(u_xx + u_yy) - rhs_func
return residual
def compute_errors(u_pred, u_exact):
"""
计算数值解与精确解之间的 L2 误差和最大模误差
:param u_pred: 数值解
:param u_exact: 精确解
:return: L2 误差和最大模误差
"""
# 计算 L2 误差
L2_error = np.sqrt(np.mean((u_pred - u_exact) ** 2))
# 计算最大模误差
max_error = np.max(np.abs(u_pred - u_exact))
return L2_error, max_error
# 检查保存路径是否存在,如果不存在则创建
save_path = './Output'
if not os.path.exists(save_path):
os.makedirs(save_path)
# 定义保存和绘图类
class SavePlot:
def __init__(self, session, x_range, y_range, num_x_points, num_y_points, xa, xb, ya, yb):
self.x_range = x_range # x 轴范围
self.y_range = y_range # y 轴范围
self.num_x_points = num_x_points # x 方向上的测试点数量
self.num_y_points = num_y_points # y 方向上的测试点数量
self.session = session # TensorFlow 会话
self.xa = xa # x 方向左边界
self.xb = xb # x 方向右边界
self.ya = ya # y 方向下边界
self.yb = yb # y 方向上边界
# 保存并绘制预测和精确解
def save_and_plot(self, u_pred, x_res_train, y_res_train):
# 生成测试点
x_test = np.linspace(self.x_range[0], self.x_range[1], self.num_x_points).reshape((-1, 1))
y_test = np.linspace(self.y_range[0], self.y_range[1], self.num_y_points).reshape((-1, 1))
x_test_grid, y_test_grid = np.meshgrid(x_test, y_test)
x_test_grid = np.reshape(x_test_grid, (-1, 1))
y_test_grid = np.reshape(y_test_grid, (-1, 1))
# 创建测试字典
test_feed_dict = {x_res_train: x_test_grid, y_res_train: y_test_grid}
# 在测试网格上进行预测
u_test = self.session.run(u_pred, feed_dict=test_feed_dict)
u_test = np.reshape(u_test, (y_test.shape[0], x_test.shape[0]))
u_test = np.transpose(u_test)
# 保存预测结果到文件
np.savetxt(os.path.join(save_path, 'u_pred.txt'), u_test, fmt='%e')
# 绘制预测结果并保存图片
plt.imshow(u_test, cmap='rainbow', aspect='auto')
plt.colorbar()
plt.title('Numerical Solution')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.savefig(os.path.join(save_path, 'u_pred.png'))
plt.show()
plt.close()
# 计算并保存精确解
exact_solution = Exact(self.xa, self.xb, self.ya, self.yb)
u_exact = exact_solution.u_exact(np.hstack((x_test_grid, y_test_grid)))
u_exact = np.reshape(u_exact, (y_test.shape[0], x_test.shape[0]))
u_exact = np.transpose(u_exact)
np.savetxt(os.path.join(save_path, 'u_exact.txt'), u_exact, fmt='%e')
# 绘制精确解并保存图片
plt.imshow(u_exact, cmap='rainbow', aspect='auto')
plt.colorbar()
plt.title('Exact Solution')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.savefig(os.path.join(save_path, 'u_exact.png'))
plt.show()
plt.close()
下面是主程序:
import os
import tensorflow as tf
import numpy as np
import time
import matplotlib.pyplot as plt
# 设置随机种子以确保可重复性
np.random.seed(1234)
tf.set_random_seed(1234)
def main():
# 定义计算域范围
x_range = [-0.5, 1.5]
y_range = [-1.0, 1.0]
# 网格点数量
num_x_points = 101
num_y_points = 101
# 残差点和边界点数量
num_residual_points = 8000
num_boundary_x_points = 100
num_boundary_y_points = 100
# 边界范围
xa = x_range[0]
xb = x_range[1]
ya = y_range[0]
yb = y_range[1]
# 创建数据集对象
data = Dataset(x_range, y_range, num_residual_points, num_boundary_x_points, num_boundary_y_points, num_x_points, num_y_points, xa, xb, ya, yb)
# 生成数据
X_res, X_b0, X_b1, Y_b0, Y_b1, Xmin, Xmax = data.build_data()
# 定义神经网络的层结构
layers = [2] + 5 * [40] + [1]
# 定义输入占位符
x_res_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_res_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
X_x_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
X_y_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
X_x_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
X_y_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
Y_x_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
Y_y_b0_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
Y_x_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
Y_y_b1_train = tf.placeholder(shape=[None, 1], dtype=tf.float32)
# 创建物理信息神经网络(PINN)
pinn = DNN(layers, Xmin, Xmax)
weights, biases = pinn.hyper_initial()
# 预测解
u_pred = pinn.fnn(tf.concat([x_res_train, y_res_train], 1), weights, biases)
# 计算残差
f_pred = pinn.pdenn(x_res_train, y_res_train, weights, biases)
# 边界条件预测 (x = xa, xb)
u_x_b0_pred = pinn.fnn(tf.concat([X_x_b0_train, X_y_b0_train], 1), weights, biases)
u_x_b1_pred = pinn.fnn(tf.concat([X_x_b1_train, X_y_b1_train], 1), weights, biases)
# 边界条件预测 (y = ya, yb)
u_y_b0_pred = pinn.fnn(tf.concat([Y_x_b0_train, Y_y_b0_train], 1), weights, biases)
u_y_b1_pred = pinn.fnn(tf.concat([Y_x_b1_train, Y_y_b1_train], 1), weights, biases)
# 定义损失函数
loss = 0.1 * tf.reduce_mean(tf.square(f_pred)) + \
tf.reduce_mean(tf.square(u_x_b0_pred)) + \
tf.reduce_mean(tf.square(u_x_b1_pred)) + \
tf.reduce_mean(tf.square(u_y_b0_pred)) + \
tf.reduce_mean(tf.square(u_y_b1_pred))
# 定义优化器
train_adam = tf.train.AdamOptimizer(0.0008).minimize(loss)
train_lbfgs = tf.contrib.opt.ScipyOptimizerInterface(loss,
method="L-BFGS-B",
options={'maxiter': 10000 ,
'ftol': 1.0 * np.finfo(float).eps})
# 创建 TensorFlow 会话
session = tf.Session()
session.run(tf.global_variables_initializer())
# 创建训练字典
train_feed_dict = {x_res_train: X_res[:, 0:1], y_res_train: X_res[:, 1:2],
X_x_b0_train: X_b0[:, 0:1], X_y_b0_train: X_b0[:, 1:2],
X_x_b1_train: X_b1[:, 0:1], X_y_b1_train: X_b1[:, 1:2],
Y_x_b0_train: Y_b0[:, 0:1], Y_y_b0_train: Y_b0[:, 1:2],
Y_x_b1_train: Y_b1[:, 0:1], Y_y_b1_train: Y_b1[:, 1:2]}
# 创建训练模型
model = Train(train_feed_dict)
# 记录训练时间
start_time = time.perf_counter()
model.nntrain(session, u_pred, loss, train_adam, train_lbfgs)
stop_time = time.perf_counter()
print('训练时间为 %.3f 秒' % (stop_time - start_time))
# 保存预测数据和图像
num_test_x_points = 101
num_test_y_points = 101
data_saver = SavePlot(session, x_range, y_range, num_test_x_points, num_test_y_points, xa, xb, ya, yb)
data_saver.save_and_plot(u_pred, x_res_train, y_res_train)
# 计算误差
x_test = np.linspace(x_range[0], x_range[1], num_test_x_points).reshape((-1, 1))
y_test = np.linspace(y_range[0], y_range[1], num_test_y_points).reshape((-1, 1))
x_t, y_t = np.meshgrid(x_test, y_test)
x_t = np.reshape(x_t, (-1, 1))
y_t = np.reshape(y_t, (-1, 1))
test_dict = {x_res_train: x_t, y_res_train: y_t}
u_test_pred = session.run(u_pred, feed_dict=test_dict) # 预测在均匀网格上的解
Exact_sln = Exact(xa, xb, ya, yb)
u_test_exact = Exact_sln.u_exact(np.hstack((x_t, y_t)))
# 计算误差
L2_error, max_error = compute_errors(u_test_pred, u_test_exact)
print('L2 Error: %.6e' % L2_error)
print('Max Error: %.7e' % max_error)
if __name__ == '__main__':
main()
程序中已经写好了详细的注释,关于优化器与 TF 会话(session) 的相关知识请各位移步 TensorFlow 优化器使用。另外建议读者对比阅读我之前总结的一维PINN 算法的实现 ,理解一维二维的本质不同,更高维的 PDE 求解也就不在话下了。
运行结果
效果不错!
-----------------------------------------------------------------------------------------------
本专栏目标从简单的一维 Poisson 方程,到对流扩散方程,Burges 方程,到二维,三维以及非线性方程,发展方程,积分方程等等,所有文章包含全部可运行代码。请持续关注!