基于R语言复杂数据回归与混合效应模型【多水平/分层/嵌套】技术与代码

news2024/11/24 18:55:30

回归分析是科学研究特别是生态学领域科学研究和数据分析十分重要的统计工具,可以回答众多科学问题,如环境因素对物种、种群、群落及生态系统或气候变化的影响;物种属性和系统发育对物种分布(多度)的影响等。纵观涉及数量统计方法生态学论文中几乎都能看到回归分析的身影。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模型(Multilevel model)/分层模型(Hierarchical Model)/嵌套模型(Nested Model),无疑是现代回归分析中应用最为广泛的统计模型,代表了主流发展方向,它不仅可以涵盖方差分析和协方差分析,同时也可以分析非正态响应变量(如0,1数据和计数数据)、数据分层、嵌套、时间自相关、空间自相关、系统发育相关导致的数据不独立情况以及数据间的非线性关系。混合效应模型形式灵活可以应对现代科学研究中各种数据情况,与传统回归模型相比具有更为强大数据分析能力,且结果更为稳定,特别适合应对科学数据结构复杂性和异质性的特点。

本课包括复杂生态数据回归及混合效应模型概述;Rstudio和R入门、数据整理和绘图基础;回归与混合效应模型,包括一般线性回归(lm)、广义线性回归(glm);线性混合效应模型(lmm)及广义线性混合效应模型(glmm);相关数据回归与混合效应模型包括时间自相关数据,空间自相数据及系统发育数据分析;非线性数据回归分析包括广义可加(混合)模型和非线性(混合)模型;回归与混合效应模型结果绘图。将通过大量实例,使大家能应对科研工作中复杂生态数据局面,选择合适模型,提高数据分析能力。

第一单元:复杂生态数据回归/混合效应模型概述

1)生态学领域数据多样性和复杂性

2)回归分析历史、理论基础

3)回归和混合效应模型基本假设和常见问题

4)如何根据复杂生态数据选择合适的回归/混合效应模型形式

图片

第二单元:R和Rstudio入门、数据整理及绘图基础

2.1  Rstudio及R语言入门

1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3)R语言数据文件读取、结果存储等

图片

2.2  R语言数据整理及绘图基础

1)tidyvese简介:tidyr、dplyr、readr、%>%等

2)数据筛选、数据合并、数据拆分、新数据生成等

3)长宽数据转换、空值(NA)等填充及删除、分组、排序及汇总等

4)基本绘图、排版、发表质量绘图输出存储(含ggplot)

图片

第三单元:回归与混合效应(多水平/层次/嵌套)模型

3.1 一般线性模型(lm)

1)基本形式、基本假设、估计方法、参数检验(t检验和F检验)、模型检验

2)一般线性回归、方差分析及协方差分析

3)一般线性回归模型验证:模型可加性、方差齐次性、残差正态性

4)一般线性回归模型选择-逐步回归

图片

3.2 广义线性模型(glm)

1) 基本形式、基本假设、估计方法、参数检验、模型检验

2) 0,1数据分析:伯努利分布、二项分布及其过度离散问题

3)计数数据各种情况及模型选择:泊松、负二项、过度离散、零膨胀、零截断

4) 广义线性模型的模型比较和选择-似然比LR和AIC

图片

第四单元:相关数据回归分析:时间、空间、系统发育相关

4.1重复测量/时间自相关数据分析

1)回归模型的方差异质性问题及解决途径

2)时间自相关分析:线性及混合效应模型

3)时间自相关+方差异质性分析

图片

4.2 空间相关数据分析

1)空间自相关概述

2)空间自相关问题解决方式

3)空间自相关问题修正基本流程-gls和lme

图片

4.3系统发育相关数据分析

1)系统发育简介:系统发育假说、系统发育信号及系统发育树

2)系统发育树及系统发育距离矩阵构建

3)系统发育信息纳入回归模型-系统发育相关(pgls)vs 广义最小二乘(gls)

4)系统发育信息纳入混合效应模型(lmm/glmm)实现案例

图片

第五单元:非线性关系数据分析:广义可加(混合)模型和非线性(混合)模型

1)“线性”回归的含义及非线性关系的判定

2)广义可加(混合效应)(GAM/GAMM)模型

3)非线性(混合效应)(NLM/NLMM)模型

图片

第六单元:回归及混合效应模型结果绘图

1)回归及混合模型分析结果数据提取和绘图准备

2)回归和混合效应模型分析结果基础图:散点图、箱线图、柱状图、预测图

3)回归和混合效应模型分析结果进阶图:散点+提琴图、峰峦图、相关图、多图排版及输出等

图片

原文链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1941979.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PyTorch计算机视觉之Vision Transformer 整体结构

【图书推荐】《PyTorch深度学习与计算机视觉实践》-CSDN博客 Vision Transformer(ViT)模型是最新提出将注意力机制应用在图像分类的模型。Vision Transformer算法会将整幅图像拆分成小图像块,然后把这些小图像块的线性映射序列作为注意力模块…

昇思25天学习打卡营第29天 | 基于MindSpore通过GPT实现情感分类

基于MindSpore框架通过GPT模型实现情感分类展示了从项目设置、数据预处理到模型训练和评估的详细步骤,提供了一个完整的案例来理解如何在自然语言处理任务中实现情感分析。 首先,环境配置是任何机器学习项目的起点。项目通过安装特定版本的MindSpore和相…

基于机器学习的旅游景区评论情感分析算法设计与实现

1 绪论 1.1 背景与意义 1.1.1 背景 旅游业是全球范围内一个快速发展的行业,旅游景区作为旅游业的核心组成部分,对于吸引游客和提升旅游体验起着重要作用。随着社交媒体和在线评论平台的普及,越来越多的游客在网上分享他们对旅游景区的评论…

[路由器]IP-MAC的绑定与取消

背景:当公司的网络不想与外部人员进行共享,可以在路由器页面配置IP-MAC的绑定,让公司内部人员的手机和电脑的mac,才能接入到公司。第一步:在ARP防护中,启动IP-MAC绑定选项,必须启动仅允许IP-MAC…

OpenAI发布“最具性价比”模型 GPT-4o mini,GPT-3.5 Turbo 已成过去式

GPT-4o mini 相较于 GPT 3.5 在多个方面实现了显著的性能提升: 得分率提升:GPT-4o mini 在 MMLU(一个涉及多种语言理解任务的基准测试)上的得分率为 82%,优于 GPT-4,并且明显高于 GPT-3.5 2。 成本效益&am…

U盘数据危机:应对文件或目录损坏无法读取的全面解析

一、U盘数据损坏的困境与挑战 U盘,作为我们日常生活中不可或缺的便携存储设备,承载着大量的工作文档、学习资料及珍贵回忆。然而,当U盘中的文件或目录突然无法读取,甚至提示损坏时,我们往往会陷入焦急与无助之中。这种…

Modbus转BACnet/IP网关快速对接Modbus协议设备与BA系统

摘要 在智能建筑和工业自动化领域,Modbus和BACnet/IP协议的集成应用越来越普遍。BA(Building Automation,楼宇自动化)系统作为现代建筑的核心,需要高效地处理来自不同协议的设备数据,负责监控和管理建筑内…

华清数据结构day5 24-7-22

1>使用栈,完成进制转换输入:一个整数,进制数输出:该数的对应的进制数 seqstack.h #ifndef SEQSTACK_H #define SEQSTACK_H #define MAX 10 #include"myhead.h" typedef int datatype;typedef struct {datatype *d…

ReadAgent,一款具有要点记忆的人工智能阅读代理

人工智能咨询培训老师叶梓 转载标明出处 现有的大模型(LLMs)在处理长文本时受限于固定的最大上下文长度,并且当输入文本越来越长时,性能往往会下降,即使在没有超出明确上下文窗口的情况下,LLMs 的性能也会随…

Java查询ES报错 I/O 异常解决方法: Request cannot be executed; I/O reactor status: STOPPED

问题 ES Request cannot be executed; I/O reactor status: STOPPED 报错解决 在使用ES和SpringBoot进行数据检索时,在接口中第一次搜索正常。第二次在搜索时在控制台就会输出Request cannot be executed; I/O reactor status: STOPPED错误 原因 本文错误是因为在使…

高清视频,无损音频,LDR6023——打造极致视听与高效充电的双重享受!

Type-C PD(Power Delivery)芯片是一种支持USB Type-C接口规范的电源管理单元,其主要功能包括: 快速充电:Type-C PD芯片支持高功率传输,能够提供更快的充电速度,使电子设备在短时间内充满电&…

自然语言处理之RNN实现情感分类

前言 IMDB数据集经过分词处理后需要进行额外的预处理,包括将Token转换为index id,并统一文本序列长度。使用MindSpore.dataset接口进行预处理操作,包括text.Lookup和PadEnd接口。此外,还需要将label数据转换为float32格式。 模型…

.NET下支持多框架的托盘功能NotifyIconEx(WPF / WinForms / Avalonia / WinUI / MAUI / Wice)

支持 WPF / WinForms / Avalonia / WinUI / MAUI / Wice 应用。 先看效果: using NotifyIconEx;var notifyIcon new NotifyIcon() {Text "NotifyIcon",Icon Icon.ExtractAssociatedIcon(Process.GetCurrentProcess().MainModule?.FileName!)! }; not…

Kafka Producer之事务性

文章目录 1. 跨会话幂等性失效2. 开启事务3. 事务流程原理 事务性可以防止跨会话幂等性失效,同时也可以保证单个生产者的指定数据,要么全部成功要么全部失败,不限分区。不可以多个生产者共用相同的事务ID。 1. 跨会话幂等性失效 幂等性开启…

redis的学习(二):常见数据结构及其方法

简介 redis常见的数据结构和他们的常用方法 redis的数据结构 redis是一个key-value的nosql,key一般是字符串,value有很多的类型。 j基本类型: stringhashlistsetsortedSet 特殊类型: GEOBitMapHyperLog key的结构 可以使用…

VScode连接虚拟机运行Python文件的方法

声明:本文使用Linux发行版本为rocky_9.4 目录 1. 在rocky_9.4最小安装的系统中,默认是没有tar工具的,因此,要先下载tar工具 2. 在安装好的vscode中下载ssh远程插件工具 3. 然后连接虚拟机 4. 查看python是否已经安装 5. 下载…

Maven的核心概念

Maven的核心概念 —2020年06月11日 什么是Maven Maven是一款服务于Java平台的自动化构建工具。 约定的目录结构 目录结构: 根目录:工程名src目录:源码pom.xml文件:Maven工程的核心配置文件main目录:存放主程序tes…

Zabbix监控系统:zabbix服务部署+基于Proxy分布式部署+zabbix主动与被动监控模式

一、Zabbix概述 1.1 简介 zabbix 是一个基于 Web 界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案。 zabbix 能监视各种网络参数,保证服务器系统的安全运营,提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问题。 zabbix…

三、GPIO按键读取

在上一篇文章中,我们详细讲解了GPIO的写函数。万事万物都具有一定的相对性,GPIO的操作也不例外。既然有写操作,那么必然也有读操作。有了上一篇文章的基础,理解本篇内容将会更加容易。 一、这篇文章能了解什么 本篇文章将基于上一…

为什么用LeSS?

实现适应性 LeSS是一个产品开发的组织系统,旨在最大化一个组织的适应性。关于适应性(或者敏捷性,也就是敏捷开发的初衷)我们是指优化: 以相对低的成本改变方向的能力,主要是基于通过频繁交付产生的探索。从…