【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

news2024/11/26 13:14:59

​​​​​​​

目录

一、引言 

二、零样本音频分类(zero-shot-audio-classification)

2.1 概述

2.2 意义

2.3 应用场景

2.4 pipeline参数

2.4.1 pipeline对象实例化参数​​​​​​​

2.4.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍Audio音频的第四篇,零样本音频分类(zero-shot-audio-classification),在huggingface库内仅有4个音频分类模型。

二、零样本音频分类(zero-shot-audio-classification)

2.1 概述

零样本学习是AI识别方法之一。简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别,还可以对于来自未见过的类别的数据进行区分。这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据,很符合现实生活中海量类别的存在形式。。

2.2 意义

在传统AI识别任务中,训练阶段和测试阶段的类别是相同的,但每次为了识别新类别的样本需要在训练集中加入这种类别的数据。一些类别的样本收集代价大,即使收集到足够的训练样本,也需要对整个模型进行重新训练。这都会加大识别系统的成本,零样本学习方法便能很好的解决这个问题。

2.3 应用场景

  • 未知物体识别——例如,模型在“马”、“牛”等类别上训练过,因此模型能够准确地识别“马”、“牛”的图片。当模型遇到“象”这个新类别,由于从未见过,模型无法作出判断。传统解决方案是收集大量“象”的图片,与原数据集一起重新训练。这种解决方案的代价高、速度慢。然而,人类能够从描述性知识中快速学习一个新概念。例如,一个儿童即使没有见过“象”,当提供他文本描述“象是一种的大型食草类动物,有长鼻和长牙”。儿童能够根据描述快速学会“象”这一新类别,并能在第一次见到“象”时识别出来。零样本学习与之类似,在没有任何训练样本的情况下,借助辅助知识(如属性、词向量、文本描述等)学习一些从未见过的新概念(类别)。
  • 未知语言翻译——比如说要进行三种语言之间的翻译,按照传统的方法需要分别训练六个网络,在日语和韩语之间没有那么多样本的情况下,训练英语→特征空间→日语,韩语→特征空间→英语这两个网络,那么就可以自动学会韩语→特征空间→日语这个翻译过程。
  • 未知类别图像合成——近年来,对抗网络GAN被用于图像合成,取得了以假乱真的效果。但传统图像合成仅能合成见过的类别的图像。零样本图像合成希望模型能够合成从未见过的类别的图像。已有一些算法通过条件GAN网络实现了零样本图像合成。
  • 图像哈希——传统利用一些训练样本来学习针对某些类别的哈希算法。但这些学习到的哈希算法无法用于新类别。零样本图像哈希,希望在已知类别上学到哈希算法能够运用到新的未知类别上。一些基于属性的零样本哈希算法已经被提出。 

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • tokenizer ( PreTrainedTokenizer ) — 管道将使用 tokenizer 来为模型编码数据。此对象继承自 PreTrainedTokenizer。
  • feature_extractor ( SequenceFeatureExtractor ) — 管道将使用的特征提取器来为模型编码数据。此对象继承自 SequenceFeatureExtractor。
  • modelcardstrModelCard可选)— 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • task (str,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。​​

2.4.2 pipeline对象使用参数 

  • audiostrList[str]np.arrayList[np.array]——管道处理三种类型的输入:
    • 包含指向音频的 http 链接的字符串
    • 包含音频本地路径的字符串
    • 在 numpy 中加载的音频
  • candidates_labels ( List[str]) — 该音频的候选标签
  • hypothesis_templatestr可选,默认为) — 与候选标签"This is a sound of {}"结合使用的句子,通过用候选标签替换占位符来尝试音频分类。然后使用 logits_per_audio 估计可能性

2.4 pipeline实战

首先下载数据集,我们采用ashraq/esc50语音数据集,其中包含2000条语音分类样本。

将数据集加载后,采用task="zero-shot-audio-classification"默认的模型laion/clap-htsat-fused进行零样本语音分类: 

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline
from datasets import load_dataset

dataset = load_dataset("ashraq/esc50")
#{'filename': '1-100210-B-36.wav', 'fold': 1, 'target': 36, 'category': 'vacuum_cleaner', 'esc10': False, 'src_file': 100210, 'take': 'B', 'audio': {'path': None, 'array': array([0.53897095, 0.39627075, 0.26739502, ..., 0.09729004, 0.11227417,0.07983398]), 'sampling_rate': 44100}}
#pipe = pipeline(task="audio-classification",model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition")
audio = dataset["train"][1]["audio"]["array"]
classifier = pipeline(task="zero-shot-audio-classification")
result = classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner","chirping_birds"])
print(result)

 数据集中的第二行为chirping_birds,代码调用结果为

[{'score': 0.9998486042022705, 'label': 'chirping_birds'}, {'score': 7.838715828256682e-05, 'label': 'Sound of vaccum cleaner'}, {'score': 7.297335105249658e-05, 'label': 'Sound of a dog'}]

2.5 模型排名

在huggingface上,我们筛选零样本音频分类模型,并按下载量从高到低排序,基本没什么人用。。。

三、总结

本文对transformers之pipeline的零样本音频分类(zero-shot-audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行零样本音频分类推理,模型目前比较冷门,但介于pipeline设计了这个task,为了完整性,还是写了这一篇。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)​​​​​​​

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)​​​​​​​

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1941244.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TinyVue:与 Vue 交往八年的组件库

本文由体验技术团队莫春辉老师原创~ 去年因故停办的 VueConf,今年如约在深圳举行。作为东道主 & 上届 VueConf 讲师的我,没有理由不来凑个热闹。大会结束后,我见裕波在朋友圈转发 Jinjiang 的文章《我和 Vue.js 的十年》,我就…

版本控制工具

版本控制工具是用于记录代码文件变化历史、方便查阅特定版本修改情况的系统,一般分为集中式和分布式两种。以下是一些常见的版本控制工具: 集中式版本控制工具 Subversion(SVN) 简介:Subversion是一种集中式版本控制…

【LeetCode】day15:110 - 平衡二叉树, 257 - 二叉树的所有路径, 404 - 左叶子之和, 222 - 完全二叉树的节点个数

LeetCode 代码随想录跟练 Day15 110.平衡二叉树257.二叉树的所有路径404.左叶子之和222.完全二叉树的节点个数 110.平衡二叉树 题目描述: 给定一个二叉树,判断它是否是 平衡二叉树 平衡二叉树的定义是,对于树中的每个节点,其左右…

文件包含漏洞: 函数,实例[pikachu_file_inclusion_local]

文件包含 文件包含是一种较为常见技术,允许程序员在不同的脚本或程序中重用代码或调用文件 主要作用和用途: 代码重用:通过将通用函数或代码段放入单独的文件中,可以在多个脚本中包含这些文件,避免重复编写相同代码。…

昇思25天学习打卡营第27天 | Diffusion扩散模型

学习心得:探索Diffusion扩散模型 在我最近对生成模型的学习中,尤其是Diffusion模型,我发现这是一种极具潜力的技术,特别是在图像生成领域。Diffusion模型的核心概念是通过一个逐步的去噪过程,将纯噪声数据转换成有意义…

算法——双指针(day4)

15.三数之和 15. 三数之和 - 力扣(LeetCode) 题目解析: 这道题目说是三数之和,其实这和我们之前做过的两数之和是一个规律的~无非就是我们需要实时改动target的值。先排好序,然后固定一个数取其负值作target&#xf…

单链表<数据结构 C版>

目录 概念 链表的单个结点 链表的打印操作 新结点的申请 尾部插入 头部插入 尾部删除 头部删除 查找 在指定位置之前插入数据 在任意位置之后插入数据 测试运行一下: 删除pos结点 删除pos之后结点 销毁链表 概念 单链表是一种在物理存储结构上非连续、非顺序…

Golang | Leetcode Golang题解之第264题丑数II

题目&#xff1a; 题解&#xff1a; func nthUglyNumber(n int) int {dp : make([]int, n1)dp[1] 1p2, p3, p5 : 1, 1, 1for i : 2; i < n; i {x2, x3, x5 : dp[p2]*2, dp[p3]*3, dp[p5]*5dp[i] min(min(x2, x3), x5)if dp[i] x2 {p2}if dp[i] x3 {p3}if dp[i] x5 {p5…

【PostgreSQL教程】PostgreSQL 选择数据库

博主介绍:✌全网粉丝20W+,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物联网、机器学习等设计与开发。 感兴趣的可…

图论模型-迪杰斯特拉算法和贝尔曼福特算法★★★★

该博客为个人学习清风建模的学习笔记&#xff0c;部分课程可以在B站&#xff1a;【强烈推荐】清风&#xff1a;数学建模算法、编程和写作培训的视频课程以及Matlab等软件教学_哔哩哔哩_bilibili 目录 ​1图论基础 1.1概念 1.2在线绘图 1.2.1网站 1.2.2MATLAB 1.3无向图的…

基于SpringBoot+Vue的校园疫情防控系统(带1w+文档)

基于SpringBootVue的校园疫情防控系统(带1w文档) 基于SpringBootVue的校园疫情防控系统(带1w文档) 主要对首页、个人中心、学生管理、疫情动态管理、知识信息管理、防疫教育管理、健康打卡管理、请假申请管理、出校登记管理、入校登记管理、核酸报告管理、交流论坛、系统管理的…

MySQL的建表及查询

一。建立表 mysql> create table student(id int(10) not null unique primary key,name varchar(20) not null,sex varchar(4),birth year,department varchar(20),address varchar(50)); mysql> create table score(id int(10) not null unique primary key auto_incr…

精明选择施工项目管理工具的实用建议

国内外主流的10款施工项目进度管理软件对比&#xff1a;PingCode、Worktile、Contractor Foreman、建设工程项目管理平台&#xff08;JSGC&#xff09;、智慧工地综合管理系统、工程项目信息管理系统&#xff08;GCXX&#xff09;、Buildertrend、Procore、Autodesk Constructi…

Edge侧边栏copilot消失

Edge侧边栏copilot消失 当前环境 自己ip问题已解决&#xff0c;edge中已登录账号&#xff0c;地区已设置为美国&#xff0c;语言已设置为英文。具体可以通过空白页右上角的setting验证 解决方案 首先&#xff0c;打开“任务管理器”&#xff0c;在其中找到 Microsoft Edge…

【C语言】动态内存管理(下)(realloc函数)

文章目录 前言1. realloc2. realloc函数在调整空间时的细节2.1 针对情况1&#xff08;realloc后面有足够的内存空间&#xff09;2.2 针对情况2&#xff08;realloc后面没有足够的内存空间&#xff09;2.3 realloc函数使用的注意事项2.4 realloc的使用实例2.5 realloc函数的补充…

ubuntu安装mysql8.0

文章目录 ubuntu版本安装修改密码取消root跳过密码验证 ubuntu版本 22.04 安装 更新软件包列表 sudo apt update安装 MySQL 8.0 服务器 sudo apt install mysql-server在安装过程中&#xff0c;系统可能会提示您设置 root 用户的密码&#xff0c;请务必牢记您设置的密码。…

产线中有MES系统 还有安装SCADA的必要吗?

MES系统即制造执行系统&#xff08;Manufacturing Execution System&#xff09;&#xff0c;是一种面向车间层的管理信息系统&#xff0c;旨在通过信息传递优化从订单下达到产品完成的全过程管理。 MES可以为企业提供包括制造数据管理、计划排程管理、生产调度管理、库存管理、…

网路布线和数值转换

文章目录 信号的分类数字信息的优势双绞线分类双绞线标准与分类 光纤的特点光纤分为单模光纤和多模光纤 光纤接口双绞线的连接规范EIA/TIA-568A和568B 线缆的连接综合布线系统无线电波的传输方式 数制转换十进制转二进制计算机的数值 信号的分类 1.模拟信号 2.数字信号 数字信…

动态住宅IP和静态住宅IP使用上有差异吗?

在互联网连接的世界中&#xff0c;IP地址是我们识别和访问网络资源的关键。住宅IP地址&#xff0c;特别是动态住宅IP和静态住宅IP&#xff0c;是两种不同类型的IP分配方式&#xff0c;它们在使用和功能上存在显著差异。 1. IP地址的稳定性 动态住宅IP&#xff1a;这种IP地址是…

七月份信息课总结

总结 七月份信息课总结算法记录线性代数&#xff1a;数论&#xff08;这是信竞生和数竞生都最难跨出的一步&#xff09;&#xff1a;动态规划&#xff08;~~DP万岁&#xff01;&#xff01;&#xff01;~~&#xff09;组合数学&#xff08;恶心&#xff0c;但我很喜欢&#xff…