(11)Python引领金融前沿:投资组合优化实战案例

news2024/9/22 11:41:47

1. 前言

本篇文章为 Python 对金融的投资组合优化的示例。投资组合优化是从一组可用的投资组合中选择最佳投资组合的过程,目的是最大限度地提高回报和降低风险。

投资组合优化是从一组可用的投资组合中选择最佳投资组合的过程,目的是最大限度地提高回报和降低风险。

本案例研究涵盖了我们在前几课中介绍的许多 Python 编程基础知识,例如获取真实世界的市场财务数据、使用 pandas 执行数据分析以及使用 Matplotlib、Seaborn 和 Plotly Express 可视化投资组合数据。

2. 导入库和数据集

在本课中,您将学习如何导入库(例如用于数值分析的 NumPy),并学习如何导入和使用 datetime。此外,您还将学习如何导入数据以执行库提供的一些操作。

在开始之前,我们需要定义以下术语

  • 打开:股票市场开盘时证券首次交易的价格。

  • :给定股票在常规交易时段内交易的最高价格。

  • :给定股票在常规交易时段内交易的最低价格。

  • 关闭:给定股票在常规交易时段交易的最后价格。

  • :开盘和收盘之间的交易股票数量。

  • 调整关闭:考虑股票分割和股息后调整后的股票收盘价。

另请注意,纽约证券交易所 (NYSE) 于美国东部时间上午 9:30 开市,上海证券交易所 (SSE) 于中国标准时间上午 9:30 开市。

# Import key librares and modules 
import pandas as pd
import numpy as np

# Import datetime module that comes pre-installed in Python 
# datetime offers classes that work with date & time information
import datetime as dt

# Use Pandas to read stock data (the csv file is included in the course package) 
stock_df = pd.read_csv('Amazon.csv')
stock_df.head(15)

# Count the number of missing values in "stock_df" Pandas DataFrame
stock_df.isnull().sum()

# Obtain information about the Pandas DataFrame such as data types, memory utilization..etc
stock_df.info()

3. 计算每日回报率

在这里插入图片描述

在这里插入图片描述

# Calculate the percentage daily return
stock_df['Daily Return'] = stock_df['Adj Close'].pct_change(1) * 100
stock_df

输出:
在这里插入图片描述

# Let's replace the first row with zeros instead of NaN
stock_df['Daily Return'].replace(np.nan, 0, inplace = True)
stock_df

在这里插入图片描述

# Use the describe() method to obtain a statistical summary about the data 
# Over the specified time period, the average adjusted close price for Amazon stock was $120.07 
# The maximum adjusted close price was $186.57
# The maximum volume of shares traded on one day were 311,346,000
stock_df.describe().round(2)

在这里插入图片描述

4. 为单只股票进行数据可视化:第一部分

在这里插入图片描述

Matplotlib 官方文档: https://matplotlib.org/
Seaborn 官方文档: https://seaborn.pydata.org/
Plotly 官方文档: https://plotly.com/python/

在这里插入图片描述

# Matplotlib is a comprehensive data visualization library in Python 
# Seaborn is a visualization library that sits on top of matplotlib and offers enhanced features 
# plotly.express module contains functions that can create interactive figures using a few lines of code

import matplotlib.pyplot as plt

!pip install seaborn
import seaborn as sns

import plotly.express as px

# Plot a Line Plot Using Plotly Express
fig = px.line(title = 'Amazon.com, Inc. (AMZN) Adjusted Closing Price [$]')
fig.add_scatter(x = stock_df['Date'], y = stock_df['Adj Close'], name = 'Adj Close')

stock_df

# Define a function that performs interactive data visualization using Plotly Express
def plot_financial_data(df, title):
    
    fig = px.line(title = title)
    
    # For loop that plots all stock prices in the pandas dataframe df
    # Note that index starts with 1 because we want to skip the date column
    
    for i in df.columns[1:]:
        fig.add_scatter(x = df['Date'], y = df[i], name = i)
        fig.update_traces(line_width = 5)
        fig.update_layout({'plot_bgcolor': "white"})

    fig.show()

# Plot High, Low, Open, Close and Adj Close
plot_financial_data(stock_df.drop(['Volume', 'Daily Return'], axis = 1), 'Amazon.com, Inc. (AMZN) Stock Price [$]')

# Plot trading volume
plot_financial_data(stock_df.iloc[:,[0,5]], 'Amazon.com, Inc. (AMZN) Trading Volume')

# Plot % Daily Returns
plot_financial_data(stock_df.iloc[:,[0,7]], 'Amazon.com, Inc. (AMZN) Percentage Daily Return [%]')

5. 为单只股票进行数据可视化:第二部分

# Define a function that classifies the returns based on the magnitude
# Feel free to change these numbers
def percentage_return_classifier(percentage_return):
    
    if percentage_return > -0.3 and percentage_return <= 0.3:
        return 'Insignificant Change'
    elif percentage_return > 0.3 and percentage_return <= 3:
        return 'Positive Change'
    elif percentage_return > -3 and percentage_return <= -0.3:
        return 'Negative Change'
    elif percentage_return > 3 and percentage_return <= 7:
        return 'Large Positive Change'
    elif percentage_return > -7 and percentage_return <= -3:
        return 'Large Negative Change'
    elif percentage_return > 7:
        return 'Bull Run'
    elif percentage_return <= -7:
        return 'Bear Sell Off'

# Apply the function to the "Daily Return" Column and place the result in "Trend" column
stock_df['Trend'] = stock_df['Daily Return'].apply(percentage_return_classifier)
stock_df

# Count distinct values in the Trend column
trend_summary = stock_df['Trend'].value_counts()
trend_summary

# Plot a pie chart using Matplotlib Library
plt.figure(figsize = (8, 8))
trend_summary.plot(kind = 'pie', y = 'Trend');

# Plot a pie chart using Matplotlib Library
plt.figure(figsize = (8, 8))
trend_summary.plot(kind = 'pie', y = 'Trend');

6. 为单只股票进行数据可视化:第三部分

在这里插入图片描述

# Let's plot a candlestick graph using Cufflinks library
# Cufflinks is a powerful Python library that connects Pandas and Plotly for generating plots using few lines of code
# Cufflinks allows for interactive data visualization
! pip install cufflinks
import cufflinks as cf
cf.go_offline() # Enabling offline mode for interactive data visualization locally

stock_df

# Set the date to be the index for the Pandas DataFrame
# This is critical to show the date on the x-axis when using cufflinks
stock_df.set_index(['Date'], inplace = True)
stock_df

# Plot Candlestick figure using Cufflinks QuantFig module
figure = cf.QuantFig(stock_df, title = 'Amazon.com, Inc. (AMZN) Candlestick Chart', name = 'AMZN')
figure.add_sma(periods =[14, 21], column = 'Close', color = ['magenta', 'green'])
figure.iplot(theme = 'white', up_color = 'green', down_color = 'red')

7. 为多只股票进行数据可视化

# Let's read multiple stocks data contained in "stock_prices.csv" attached in the course package 
# The Appendix includes details on how to obtain this data using yfinance and Pandas Datareader 
# Note that yfinance and Pandas Datareader might experience outage in some geographical regions

# We will focus our analysis on U.S. stocks, similar analysis could be performed on Asian, European or African stocks  
# AMZN: Amazon Inc. - Multinational tech company focusing on e-commerce, cloud computing, and artificial intelligence
# JPM: JPMorgan Chase and Co. - Multinational investment bank and financial services holding company
# META: Meta Platforms, formerly named Facebook Inc. - META owns Facebook, Instagram, and WhatsApp
# PG: Procter and Gamble (P&G) - Multinational consumer goods corporation
# GOOG: Google (Alphabet Inc.) - Multinational company that focuses on search engine tech, e-commerce, Cloud and AI 
# CAT: Caterpillar - World's largest construction-equipment manufacturer
# PFE: Pfizer Inc. - Multinational pharmaceutical and biotechnology corporation
# EXC: Exelon - An American Fortune 100 energy company 
# DE: Deere & Company (John Deere) - Manufactures agricultural machinery and heavy equipment
# JNJ: Johnson & Johnson - A multinational corporation that develops medical devices and pharmaceuticals

close_price_df = pd.read_csv('stock_prices.csv')
close_price_df

# The objective of this code cell is to calculate the percentage daily return
# We will perform this calculation on all stocks except for the first column which is "Date"
daily_returns_df = close_price_df.iloc[:, 1:].pct_change() * 100
daily_returns_df.replace(np.nan, 0, inplace = True)
daily_returns_df

# Insert the date column at the start of the Pandas DataFrame (@ index = 0)
daily_returns_df.insert(0, "Date", close_price_df['Date'])
daily_returns_df

# Plot closing prices using plotly Express. Note that we used the same pre-defined function "plot_financial_data"
plot_financial_data(close_price_df, 'Adjusted Closing Prices [$]')

# Plot the stocks daily returns
plot_financial_data(daily_returns_df, 'Percentage Daily Returns [%]')

# Plot histograms for stocks daily returns using plotly express
# Compare META to JNJ daily returns histograms
fig = px.histogram(daily_returns_df.drop(columns = ['Date']))
fig.update_layout({'plot_bgcolor': "white"})

# Plot a heatmap showing the correlations between daily returns
# Strong positive correlations between Catterpillar and John Deere - both into heavy equipment and machinery
# META and Google - both into Tech and Cloud Computing
plt.figure(figsize = (10, 8))
sns.heatmap(daily_returns_df.drop(columns = ['Date']).corr(), annot = True);

# Plot the Pairplot between stocks daily returns
sns.pairplot(daily_returns_df);

# Function to scale stock prices based on their initial starting price
# The objective of this function is to set all prices to start at a value of 1 
def price_scaling(raw_prices_df):
    scaled_prices_df = raw_prices_df.copy()
    for i in raw_prices_df.columns[1:]:
          scaled_prices_df[i] = raw_prices_df[i]/raw_prices_df[i][0]
    return scaled_prices_df

price_scaling(close_price_df)

8. 定义一个生成随机投资组合权重的函数

在这里插入图片描述

# Let's create an array that holds random portfolio weights
# Note that portfolio weights must add up to 1 
import random

def generate_portfolio_weights(n):
    weights = []
    for i in range(n):
        weights.append(random.random())
        
    # let's make the sum of all weights add up to 1
    weights = weights/np.sum(weights)
    return weights

# Call the function (Run this cell multiple times to generate different outputs)
weights = generate_portfolio_weights(4)
print(weights)

9. 进行资产配置并计算投资组合的日价值/回报率

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

# Let's define the "weights" list similar to the slides
weights = [0.032266, 0.094461, 0.117917, 0.132624, 0.145942, 0.128299, 0.10009, 0.007403, 0.088581, 0.152417]
weights

# Let's display "close_price_df" Pandas DataFrame
close_price_df

# Scale stock prices using the "price_scaling" function that we defined earlier (make all stock values start at 1)
portfolio_df = close_price_df.copy()
scaled_df = price_scaling(portfolio_df)
scaled_df

# Use enumerate() method to obtain the stock names along with a counter "i" (0, 1, 2, 3,..etc.)
# This counter "i" will be used as an index to access elements in the "weights" list
initial_investment = 1000000
for i, stock in enumerate(scaled_df.columns[1:]):
    portfolio_df[stock] = weights[i] * scaled_df[stock]  * initial_investment
portfolio_df.round(1)

# Assume that we have $1,000,000 that we would like to invest in one or more of the selected stocks
# Let's create a function that receives the following arguments: 
      # (1) Stocks closing prices
      # (2) Random weights 
      # (3) Initial investment amount
# The function will return a DataFrame that contains the following:
      # (1) Daily value (position) of each individual stock over the specified time period
      # (2) Total daily value of the portfolio 
      # (3) Percentage daily return 

def asset_allocation(df, weights, initial_investment):
    portfolio_df = df.copy()

    # Scale stock prices using the "price_scaling" function that we defined earlier (Make them all start at 1)
    scaled_df = price_scaling(df)
  
    for i, stock in enumerate(scaled_df.columns[1:]):
        portfolio_df[stock] = scaled_df[stock] * weights[i] * initial_investment

    # Sum up all values and place the result in a new column titled "portfolio value [$]" 
    # Note that we excluded the date column from this calculation
    portfolio_df['Portfolio Value [$]'] = portfolio_df[portfolio_df != 'Date'].sum(axis = 1, numeric_only = True)
            
    # Calculate the portfolio percentage daily return and replace NaNs with zeros
    portfolio_df['Portfolio Daily Return [%]'] = portfolio_df['Portfolio Value [$]'].pct_change(1) * 100 
    portfolio_df.replace(np.nan, 0, inplace = True)
    
    return portfolio_df

# Now let's put this code in a function and generate random weights
# Let's obtain the number of stocks under consideration (note that we ignored the "Date" column) 
n = len(close_price_df.columns)-1

# Let's generate random weights 
print('Number of stocks under consideration = {}'.format(n))
weights = generate_portfolio_weights(n).round(6)
print('Portfolio weights = {}'.format(weights))

# Let's test out the "asset_allocation" function
portfolio_df = asset_allocation(close_price_df, weights, 1000000)
portfolio_df.round(2)

# Plot the portfolio percentage daily return
plot_financial_data(portfolio_df[['Date', 'Portfolio Daily Return [%]']], 'Portfolio Percentage Daily Return [%]')

# Plot each stock position in our portfolio over time
# This graph shows how our initial investment in each individual stock grows over time
plot_financial_data(portfolio_df.drop(['Portfolio Value [$]', 'Portfolio Daily Return [%]'], axis = 1), 'Portfolio positions [$]')

# Plot the total daily value of the portfolio (sum of all positions)
plot_financial_data(portfolio_df[['Date', 'Portfolio Value [$]']], 'Total Portfolio Value [$]')

10. 定义“模拟”函数,该函数执行资产配置并计算关键的投资组合指标

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# Let's define the simulation engine function 
# The function receives: 
    # (1) portfolio weights
    # (2) initial investment amount
# The function performs asset allocation and calculates portfolio statistical metrics including Sharpe ratio
# The function returns: 
    # (1) Expected portfolio return 
    # (2) Expected volatility 
    # (3) Sharpe ratio 
    # (4) Return on investment 
    # (5) Final portfolio value in dollars


def simulation_engine(weights, initial_investment):
    # Perform asset allocation using the random weights (sent as arguments to the function)
    portfolio_df = asset_allocation(close_price_df, weights, initial_investment)
  
    # Calculate the return on the investment 
    # Return on investment is calculated using the last final value of the portfolio compared to its initial value
    return_on_investment = ((portfolio_df['Portfolio Value [$]'][-1:] - 
                             portfolio_df['Portfolio Value [$]'][0])/ 
                             portfolio_df['Portfolio Value [$]'][0]) * 100
  
    # Daily change of every stock in the portfolio (Note that we dropped the date, portfolio daily worth and daily % returns) 
    portfolio_daily_return_df = portfolio_df.drop(columns = ['Date', 'Portfolio Value [$]', 'Portfolio Daily Return [%]'])
    portfolio_daily_return_df = portfolio_daily_return_df.pct_change(1) 
  
    # Portfolio Expected Return formula
    expected_portfolio_return = np.sum(weights * portfolio_daily_return_df.mean() ) * 252
  
    # Portfolio volatility (risk) formula
    # The risk of an asset is measured using the standard deviation which indicates the dispertion away from the mean
    # The risk of a portfolio is not a simple sum of the risks of the individual assets within the portfolio
    # Portfolio risk must consider correlations between assets within the portfolio which is indicated by the covariance 
    # The covariance determines the relationship between the movements of two random variables
    # When two stocks move together, they have a positive covariance when they move inversely, the have a negative covariance 

    covariance = portfolio_daily_return_df.cov() * 252 
    expected_volatility = np.sqrt(np.dot(weights.T, np.dot(covariance, weights)))

    # Check out the chart for the 10-years U.S. treasury at https://ycharts.com/indicators/10_year_treasury_rate
    rf = 0.03 # Try to set the risk free rate of return to 1% (assumption)

    # Calculate Sharpe ratio
    sharpe_ratio = (expected_portfolio_return - rf)/expected_volatility 
    return expected_portfolio_return, expected_volatility, sharpe_ratio, portfolio_df['Portfolio Value [$]'][-1:].values[0], return_on_investment.values[0]
  
# Let's test out the "simulation_engine" function and print out statistical metrics
# Define the initial investment amount
initial_investment = 1000000
portfolio_metrics = simulation_engine(weights, initial_investment)

print('Expected Portfolio Annual Return = {:.2f}%'.format(portfolio_metrics[0] * 100))
print('Portfolio Standard Deviation (Volatility) = {:.2f}%'.format(portfolio_metrics[1] * 100))
print('Sharpe Ratio = {:.2f}'.format(portfolio_metrics[2]))
print('Portfolio Final Value = ${:.2f}'.format(portfolio_metrics[3]))
print('Return on Investment = {:.2f}%'.format(portfolio_metrics[4]))

11. 运行蒙特卡罗模拟

在这里插入图片描述

# Set the number of simulation runs
sim_runs = 10000
initial_investment = 1000000

# Placeholder to store all weights
weights_runs = np.zeros((sim_runs, n))

# Placeholder to store all Sharpe ratios
sharpe_ratio_runs = np.zeros(sim_runs)

# Placeholder to store all expected returns
expected_portfolio_returns_runs = np.zeros(sim_runs)

# Placeholder to store all volatility values
volatility_runs = np.zeros(sim_runs)

# Placeholder to store all returns on investment
return_on_investment_runs = np.zeros(sim_runs)

# Placeholder to store all final portfolio values
final_value_runs = np.zeros(sim_runs)

for i in range(sim_runs):
    # Generate random weights 
    weights = generate_portfolio_weights(n)
    # Store the weights
    weights_runs[i,:] = weights
    
    # Call "simulation_engine" function and store Sharpe ratio, return and volatility
    # Note that asset allocation is performed using the "asset_allocation" function  
    expected_portfolio_returns_runs[i], volatility_runs[i], sharpe_ratio_runs[i], final_value_runs[i], return_on_investment_runs[i] = simulation_engine(weights, initial_investment)
    print("Simulation Run = {}".format(i))   
    print("Weights = {}, Final Value = ${:.2f}, Sharpe Ratio = {:.2f}".format(weights_runs[i].round(3), final_value_runs[i], sharpe_ratio_runs[i]))   
    print('\n')

12. 执行投资组合优化

在这里插入图片描述

# List all Sharpe ratios generated from the simulation
sharpe_ratio_runs

# Return the index of the maximum Sharpe ratio (Best simulation run) 
sharpe_ratio_runs.argmax()

# Return the maximum Sharpe ratio value
sharpe_ratio_runs.max()

weights_runs

# Obtain the portfolio weights that correspond to the maximum Sharpe ratio (Golden set of weights!)
weights_runs[sharpe_ratio_runs.argmax(), :]

# Return Sharpe ratio, volatility corresponding to the best weights allocation (maximum Sharpe ratio)
optimal_portfolio_return, optimal_volatility, optimal_sharpe_ratio, highest_final_value, optimal_return_on_investment = simulation_engine(weights_runs[sharpe_ratio_runs.argmax(), :], initial_investment)

print('Best Portfolio Metrics Based on {} Monte Carlo Simulation Runs:'.format(sim_runs))
print('  - Portfolio Expected Annual Return = {:.02f}%'.format(optimal_portfolio_return * 100))
print('  - Portfolio Standard Deviation (Volatility) = {:.02f}%'.format(optimal_volatility * 100))
print('  - Sharpe Ratio = {:.02f}'.format(optimal_sharpe_ratio))
print('  - Final Value = ${:.02f}'.format(highest_final_value))
print('  - Return on Investment = {:.02f}%'.format(optimal_return_on_investment))

# Create a DataFrame that contains volatility, return, and Sharpe ratio for all simualation runs
sim_out_df = pd.DataFrame({'Volatility': volatility_runs.tolist(), 'Portfolio_Return': expected_portfolio_returns_runs.tolist(), 'Sharpe_Ratio': sharpe_ratio_runs.tolist() })
sim_out_df

# Plot volatility vs. return for all simulation runs
# Highlight the volatility and return that corresponds to the highest Sharpe ratio
import plotly.graph_objects as go
fig = px.scatter(sim_out_df, x = 'Volatility', y = 'Portfolio_Return', color = 'Sharpe_Ratio', size = 'Sharpe_Ratio', hover_data = ['Sharpe_Ratio'] )
fig.update_layout({'plot_bgcolor': "white"})
fig.show()


# Use this code if Sharpe ratio is negative
# fig = px.scatter(sim_out_df, x = 'Volatility', y = 'Portfolio_Return', color = 'Sharpe_Ratio', hover_data = ['Sharpe_Ratio'] )


# Let's highlight the point with the highest Sharpe ratio
fig = px.scatter(sim_out_df, x = 'Volatility', y = 'Portfolio_Return', color = 'Sharpe_Ratio', size = 'Sharpe_Ratio', hover_data = ['Sharpe_Ratio'] )
fig.add_trace(go.Scatter(x = [optimal_volatility], y = [optimal_portfolio_return], mode = 'markers', name = 'Optimal Point', marker = dict(size=[40], color = 'red')))
fig.update_layout(coloraxis_colorbar = dict(y = 0.7, dtick = 5))
fig.update_layout({'plot_bgcolor': "white"})
fig.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1939984.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第四周:机器学习笔记

第四周学习周报 摘要Abstract机器学习任务攻略1.loss on training data1.1 training data的loss过大怎么办&#xff1f;1.2 training data的loss小&#xff0c;但是testing data loss大怎么办&#xff1f; 2. 如何选择一个中最好的模型&#xff1f;2.1 Cross Validation&#x…

前端调试技巧:动态高亮渲染区域

效果&#xff1a; 前端界面的渲染过程、次数&#xff0c;会通过高亮变化来显示&#xff0c;通过这种效果排除一些BUG 高亮 打开方式 F12进入后点击ESC&#xff0c;进入rendering&#xff0c;选择前三个即可&#xff08;如果没有rendering&#xff0c;点击橘色部分勾选上&…

docker compose 容器 编排分组

遇到问题&#xff1a;执行docker compose up -d 后docker compose 创建的容器们 在desktop-docker 中都在docker下一堆 搜索想着能不能把这个docker名字改一下&#xff0c;但是都没有找到这样的一个方案&#xff1b; 最后发现&#xff0c;我执行docker compose up -d 命令所在…

昇思25天学习打卡营第26天 | GAN图像生成

学习心得&#xff1a;GAN 图像生成 在最近完成的项目中&#xff0c;我利用生成对抗网络&#xff08;GAN&#xff09;进行了图像生成的实践学习。通过这一过程&#xff0c;我不仅加深了对GAN的理解&#xff0c;而且对于深度学习在图像处理领域的应用有了更实际的把握。以下是我…

Android屏幕适配度量单位px、ppi、dpi、dp、sp等

目录 0 前言1 屏幕尺寸2 像素 px3 分辨率4 每英寸像素数ppi5 屏幕密度 dpi6 密度无关像素 dp7 缩放无关像素sp 0 前言 我以iphone13举例&#xff0c;说来挺有意思&#xff0c;我们这做Android开发的只有一位平常用的是Android手机。 可以看到下面有6.1英寸、分辨率、ppi等。接…

MQTT micro-ROS:构建高效的机器人应用

什么是 micro-ROS&#xff1f; 在之前的 MQTT & FreeRTOS&#xff1a;打造你的远程控制实时应用 中&#xff0c;我们介绍了如何在 FreeRTOS 中构建你的 MQTT 应用。 FreeRTOS 主要应用在对实时性要求较高的场景中&#xff0c;但这类 RTOS 专注于提供实时任务调度和同步机…

使用Vuepress搭建个人网站

网站地址&#xff1a;bloggo.chat

GraphRAG参数与使用步骤 | 基于GPT-4o-mini实现更便宜的知识图谱RAG

首先给兄弟朋友们展示一下结论&#xff0c;一个文本18万多字&#xff0c;txt文本大小185K&#xff0c;采用GraphRAG,GPT-4o-mini模型&#xff0c;索引耗时差不多5分钟&#xff0c;消耗API价格0.15美元 GraphRAG介绍 GraphRAG是微软最近开源的一款基于知识图谱技术的框架&#…

新版SpringSecurity5.x使用与配置

目录 一、了解SpringSecurity 1.1 什么是Spring Security&#xff1f; 1.2 Spring Security功能 1.3 Spring Security原理 1.4 RABC (Role-Based Access Control) 二、SpringSecurity简单案例 2.1 引入SpringSecurity依赖 2.2 创建一个简单的Controller 三、SpringSecu…

【数据结构】初识集合框架

&#x1f387;&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了 博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳&#xff0c;欢迎大佬指点&#xff01; 人生格言: 当你的才华撑不起你的野心的时候,你就应该静下心来学习! 欢迎志同道合的朋友…

自己编写一个谷歌浏览器插件, 模拟某音直播间自动发消息

闲来没事&#xff0c; 做个插件玩一玩&#xff0c;于是一顿学习。 按照浏览器插件规范&#xff0c;一顿代码编写&#xff0c; 搞了一个简单的插件。仅做学习。 可以实现在直播间自动发消息。 定时轮发。 实现原理&#xff1a; 利用谷歌popub.js 发送消息。 在content-script.…

【无人机】低空经济中5G RedCap芯片的技术分析报告

1. 引言 图一. 新基建&#xff1a;低空经济 低空经济作为一种新兴的经济形态&#xff0c;涵盖了无人机、电动垂直起降飞行器&#xff08;eVTOL&#xff09;、低空物流、空中交通管理等多个领域。随着5G网络的普及和演进&#xff0c;5G RedCap&#xff08;Reduced Capability&a…

【功能】DOTween动画插件使用

一、下载安装DOTween插件&#xff0c;下载地址&#xff1a;DOTween - Asset Store (unity.com) 使用 Free免费版本即可&#xff0c;导入成功后&#xff0c;Project视图中会出现 DOTween 文件夹 二、使用案例 需求1&#xff1a;控制材质球中的某个属性值&#xff0c;实现美术需…

MS17-010漏洞复现+利用

1、 漏洞简述 漏洞名称&#xff1a;“永恒之蓝”漏洞 漏洞编号&#xff1a;MS17-010&#xff0c;CVE-2017-0143/0144/0145/0146/0147/0148 漏洞类型&#xff1a;缓冲区溢出漏洞 漏洞影响&#xff1a;信息泄露 CVSS评分&#xff1a;9.3&#xff08;High&#xff09; 利用难…

ABAP使用SQL直接更新数据库与使用IN UPDATE TASK的区别

1. 背景 刚接触ABAP的小伙伴常常会有这样的疑问&#xff0c;为什么不直接使用Open SQL直接更新数据库&#xff0c;而要把对DB的操作封装到IN UPDATE TASK中呢&#xff1f; 对于这个问题&#xff0c;比较常见的解释是&#xff0c;IN UPDATE TASK的方式会保证数据更新的一致性。…

HTML零基础自学笔记(上)-7.18

HTML零基础自学笔记&#xff08;上&#xff09; 参考&#xff1a;pink老师一、HTML, Javascript, CSS的关系是什么?二、什么是HTML?1、网页&#xff0c;网站的概念2、THML的基本概念3、THML的骨架标签/基本结构标签 三、HTML标签1、THML标签介绍2、常用标签图像标签&#xff…

09 B端产品业务调研的分析框架(2)

产品经理要有建立从企业全局的视角去分析业务的思维模式和习惯&#xff0c;面对不熟悉的复杂业务&#xff0c;可参考下面业务分析架构图进行分析&#xff1a; 业务分析框架图 战略层 战略&#xff1a;价值方案和计划。 使命&#xff1a;公司因何而存在。 愿景&#xff1a;公…

R语言画散点图-饼图-折线图-柱状图-箱线图-等高线图-曲线图-热力图-雷达图-韦恩图(三D)

R语言画散点图-饼图-折线图-柱状图-箱线图-等高线图-曲线图-热力图-雷达图-韦恩图&#xff08;三D&#xff09; 散点图使用 plotly 包示例解析效果 使用 scatterplot3d 包示例解析效果 饼图使用 plotly 包示例解析效果 使用 plotrix 包示例解析效果 折线图使用 plotly 包示例解…

算法日记day 16(二叉树的广度优先遍历|反转、对称二叉树)

一、二叉树的层序遍历 题目&#xff1a; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3]…

使用 PVE 自签 CA 证书签发新证书

前言 PVE 安装时会自动创建一个有效期 10 年的 CA 证书, 我们可以利用这个 CA 证书给虚拟机中的 Web 应用签发新的 TLS 证书用于提供 HTTPS 服务. 下面以 PVE 虚拟机中通过 Docker 跑的一个 雷池 应用为例进行演示. PVE 证书位置 官方文档: https://pve.proxmox.com/wiki/Pr…