R语言画散点图-饼图-折线图-柱状图-箱线图-等高线图-曲线图-热力图-雷达图-韦恩图(三D)

news2025/1/11 2:22:52

R语言画散点图-饼图-折线图-柱状图-箱线图-等高线图-曲线图-热力图-雷达图-韦恩图(三D)

  • 散点图
    • 使用 plotly 包
      • 示例
      • 解析
      • 效果
    • 使用 scatterplot3d 包
      • 示例
      • 解析
      • 效果
  • 饼图
    • 使用 plotly 包
      • 示例
      • 解析
      • 效果
    • 使用 plotrix 包
      • 示例
      • 解析
      • 效果
  • 折线图
    • 使用 plotly 包
      • 示例
      • 解析
      • 效果
    • 使用 rgl 包
      • 示例
      • 解析
      • 效果
  • 柱状图
    • 示例
    • 解析
    • 效果
  • 箱线图
    • 示例
    • 解析
    • 效果
  • 直方图
    • 示例
    • 解析
    • 效果
  • 等高线图
    • 使用 plotly 包(方式1)
      • 示例
      • 解析
      • 效果
    • 使用 plotly 包(方式2)
      • 示例
      • 解析
      • 效果
  • 曲线图
    • 示例
    • 解析
    • 效果
  • 热力图
    • 示例
    • 解析
    • 效果
  • 雷达图
    • 示例
    • 效果
  • 韦恩图
    • 示例
    • 解析
    • 效果

散点图

可以通过几种不同的方式绘制3D散点图。最常用的工具包括 plotly 包和 scatterplot3d 包

使用 plotly 包

plotly 是一个非常强大的交互式图形包,支持多种3D绘图功能,包括3D散点图

示例

# 加载plotly包
library(plotly)

# 创建示例数据
set.seed(123)
data <- data.frame(
  x = rnorm(100),
  y = rnorm(100),
  z = rnorm(100)
)

# 绘制3D散点图
fig <- plot_ly(data, x = ~x, y = ~y, z = ~z, type = 'scatter3d', mode = 'markers',
                marker = list(size = 5, color = 'rgb(23, 190, 207)', opacity = 0.8))
fig <- fig %>% layout(title = "3D散点图示例",
                      scene = list(xaxis = list(title = 'X轴'),
                                   yaxis = list(title = 'Y轴'),
                                   zaxis = list(title = 'Z轴')))
fig

解析

  • plot_ly() 函数用于创建散点图对象,type = ‘scatter3d’ 指定图形类型为散点图
  • layout() 用于设置图表的标题和轴标签
  • 生成的图形可以在Web浏览器中交互查看

效果

在这里插入图片描述

使用 scatterplot3d 包

scatterplot3d 包提供了一种简单的方式来创建3D散点图,虽然功能不如 plotly 和 rgl 强大,但对于基本的3D绘图非常有效

示例

确保已安装 scatterplot3d 包:

install.packages("scatterplot3d")
# 加载scatterplot3d包
library(scatterplot3d)

# 创建示例数据
set.seed(123)
x <- rnorm(100)
y <- rnorm(100)
z <- rnorm(100)

# 绘制3D散点图
scatterplot3d(x, y, z, color = "red", pch = 16,
               xlab = "X轴", ylab = "Y轴", zlab = "Z轴",
               main = "3D散点图示例")

解析

  • scatterplot3d() 函数用于创建基本的3D散点图
  • color 设置点的颜色,pch 设置点的类型

效果

在这里插入图片描述

饼图

使用 plotly 包

plotly 是一个强大的交互式图形包,能够创建各种复杂的图形,包括类似于3D饼图的效果。

示例

# 加载plotly包
library(plotly)

# 创建数据
labels <- c("A", "B", "C", "D")
values <- c(10, 20, 30, 40)

# 绘制3D饼图
fig <- plot_ly(labels = labels, values = values, type = 'pie', 
                hole = 0.3,  # 控制饼图中心空洞的大小
                textinfo = 'label+percent',
                marker = list(colors = c('#FF9999','#66B2FF','#99FF99','#FFCC99')))

fig <- fig %>% layout(title = '3D饼图效果示例',
                      showlegend = TRUE,
                      scene = list(
                        xaxis = list(title = 'X轴'),
                        yaxis = list(title = 'Y轴'),
                        zaxis = list(title = 'Z轴')
                      ))

fig

解析

  • plot_ly() 用于创建饼图对象,type = ‘pie’ 指定图形类型为饼图
  • hole 参数用于创建一个环形图,这样的效果更接近3D饼图的外观

效果

在这里插入图片描述

使用 plotrix 包

示例

# 加载plotrix包
library(plotrix)

# 创建数据
values <- c(10, 20, 30, 40)
labels <- c("A", "B", "C", "D")
colors <- c("red", "green", "blue", "yellow")

# 绘制3D饼图
pie3D(values, labels = labels, col = colors, explode = 0.1,
      main = "3D饼图示例", radius = 0.9)

解析

  • pie3D() 函数用于创建类似3D的饼图效果,虽然它不是完全的3D图形,但通过阴影和爆炸效果模拟了3D外观

效果

在这里插入图片描述

折线图

绘制 3D 折线图可以使用 plotly 或 rgl 等包。plotly 提供了直观的 3D 绘图功能,适合用于交互式图形,而 rgl 则适合用于需要更详细定制的 3D 图形

使用 plotly 包

示例

# 加载 plotly 包
library(plotly)

# 创建数据
x <- seq(1, 10, length.out = 100)
y <- sin(x)
z <- cos(x)

# 绘制 3D 折线图
fig <- plot_ly(x = x, y = y, z = z, type = 'scatter3d', mode = 'lines+markers')

# 添加标题和标签
fig <- fig %>% layout(
  title = '3D 折线图示例',
  scene = list(
    xaxis = list(title = 'X 轴'),
    yaxis = list(title = 'Y 轴'),
    zaxis = list(title = 'Z 轴')
  )
)

fig

解析

1. 创建数据:

  • x:自变量序列
  • y 和 z:因变量序列,分别对应 sin(x) 和 cos(x)

2. 绘制 3D 折线图:

  • plot_ly() 函数创建3D 折线图,type = ‘scatter3d’ 指定 3D 散点图(包含折线),mode = ‘lines+markers’ 指定显示折线和标记点

3. 设置图形属性:

  • layout() 函数设置图形的标题和坐标轴标签。

效果

在这里插入图片描述

使用 rgl 包

示例

# 加载 rgl 包
library(rgl)

# 创建数据
x <- seq(1, 10, length.out = 100)
y <- sin(x)
z <- cos(x)

# 绘制 3D 折线图
plot3d(x, y, z, type = 'l', col = 'blue', lwd = 2, xlab = 'X 轴', ylab = 'Y 轴', zlab = 'Z 轴')

# 添加标题
title3d(main = '3D 折线图示例')

# 设置视角
rgl.viewpoint(theta = 45, phi = 30)

解析

1. 创建数据:

  • x、y 和 z 为 3D 数据的坐标

2. 绘制 3D 折线图:

  • plot3d() 函数绘制 3D 折线图,type = ‘l’ 指定绘制线条,col 设置颜色,lwd 设置线宽

3. 设置图形属性:

  • title3d() 函数设置图形标题
  • rgl.viewpoint() 设置视角以获得更好的 3D 视图效果

效果

在这里插入图片描述

柱状图

示例

# 加载 rgl 包
library(rgl)

# 创建数据
x <- c(1, 2, 3, 4)
y <- c(1, 2, 3, 4)
heights <- c(10, 20, 15, 25)

# 绘制 3D 柱状图
for (i in seq_along(x)) {
  x_pos <- x[i]
  y_pos <- y[i]
  z_height <- heights[i]
  
  # 生成柱状体的顶点
  x_corners <- c(x_pos - 0.5, x_pos + 0.5, x_pos + 0.5, x_pos - 0.5)
  y_corners <- c(y_pos - 0.5, y_pos - 0.5, y_pos + 0.5, y_pos + 0.5)
  z_corners <- c(0, 0, 0, 0)
  
  # 绘制柱状体
  rgl::polygon3d(x_corners, y_corners, z_corners, col = 'blue', alpha = 0.6)
  rgl::polygon3d(x_corners, y_corners, z_corners + z_height, col = 'red', alpha = 0.6)
  
  # 绘制柱状体的侧面
  rgl::polygon3d(c(x_corners[1], x_corners[2], x_corners[2], x_corners[1]), 
                 c(y_corners[1], y_corners[1], y_corners[2], y_corners[2]),
                 c(0, 0, z_height, z_height), 
                 col = 'grey', alpha = 0.5)
}

# 设置视角和轴
rgl::rgl.viewpoint(theta = 45, phi = 30)
rgl::axes3d()
rgl::title3d(main = '3D 柱状图示例')

# 使图形窗口保持打开状态
rgl::rglwidget()

解析

1. 创建数据:

  • x 和 y 是柱状图的坐标位置
  • heights 是柱状图的高度

2. 使用 rgl:

  • polygon3d() 函数绘制柱状体的底面、顶部和侧面
  • rgl.viewpoint() 设置视角以获得更好的 3D 视图效果
  • rglwidget() 保持图形窗口打开状态,以便进行交互查看

效果

在这里插入图片描述

箱线图

示例

library(rgl)

# 生成一些示例数据
set.seed(123)
data <- matrix(rnorm(300), ncol = 3)

# 定义一个函数来绘制一个箱线图的长方体
draw_box <- function(x, y, z, width, height, depth, col = "blue") {
  # 绘制箱子的底面
  quads3d(x + c(-width/2, width/2, width/2, -width/2),
          y + c(-height/2, -height/2, height/2, height/2),
          z + rep(-depth/2, 4),
          col = col, alpha = 0.5)
  # 绘制箱子的顶面
  quads3d(x + c(-width/2, width/2, width/2, -width/2),
          y + c(-height/2, -height/2, height/2, height/2),
          z + rep(depth/2, 4),
          col = col, alpha = 0.5)
  # 绘制箱子的侧面
  quads3d(x + c(-width/2, width/2, width/2, -width/2),
          y + c(-height/2, -height/2, -height/2, -height/2),
          z + c(-depth/2, -depth/2, depth/2, depth/2),
          col = col, alpha = 0.5)
  quads3d(x + c(-width/2, width/2, width/2, -width/2),
          y + c(height/2, height/2, height/2, height/2),
          z + c(-depth/2, -depth/2, depth/2, depth/2),
          col = col, alpha = 0.5)
  quads3d(x + c(-width/2, width/2, width/2, -width/2),
          y + c(-height/2, height/2, height/2, -height/2),
          z + c(-depth/2, -depth/2, -depth/2, -depth/2),
          col = col, alpha = 0.5)
  quads3d(x + c(-width/2, width/2, width/2, -width/2),
          y + c(-height/2, height/2, height/2, -height/2),
          z + c(depth/2, depth/2, depth/2, depth/2),
          col = col, alpha = 0.5)
}

# 创建一个 3D 窗口
open3d()

# 绘制几个 3D 箱线图长方体
for (i in 1:ncol(data)) {
  # 计算长方体的边界
  q1 <- quantile(data[, i], 0.25)
  q3 <- quantile(data[, i], 0.75)
  median <- median(data[, i])
  lower <- min(data[, i])
  upper <- max(data[, i])
  
  # 绘制长方体
  draw_box(x = i, y = median, z = 0, width = 0.5, height = q3 - q1, depth = 1,
           col = "blue")
}

# 添加坐标轴标签
axes3d()
title3d(main = "3D Boxplot", xlab = "Sample", ylab = "Value", zlab = "Depth")

解析

  • draw_box 函数创建了一个 3D 长方体,模拟箱线图的外观
  • 使用 quads3d 函数绘制长方体的各个面
  • 对于每个数据列,计算了四分位数和中位数,并在 3D 空间中绘制了长方体

效果

在这里插入图片描述

直方图

示例

# 安装和加载必要的包
install.packages("rgl")
library(rgl)

# 生成示例数据
set.seed(123)
data <- matrix(rnorm(1000), ncol = 10)  # 10组数据,每组100个数据点

# 计算每组数据的频数
hist_data <- apply(data, 2, function(x) hist(x, breaks = 10, plot = FALSE))

# 清空之前的图形
open3d()

# 设定颜色
colors <- rainbow(length(hist_data))

# 绘制3D直方图
for (i in 1:length(hist_data)) {
  for (j in 1:(length(hist_data[[i]]$breaks) - 1)) {
    x0 <- hist_data[[i]]$breaks[j]    # 柱体底边左端
    x1 <- hist_data[[i]]$breaks[j + 1] # 柱体底边右端
    y0 <- i - 0.5                       # 柱体底边在Y轴上的位置
    y1 <- i + 0.5                       # 柱体顶边在Y轴上的位置
    z0 <- 0                            # 柱体底边的Z坐标
    z1 <- hist_data[[i]]$counts[j]    # 柱体顶边的Z坐标

    # 绘制底面
    quads3d(
      x = c(x0, x0, x1, x1), 
      y = c(y0, y1, y1, y0), 
      z = rep(z0, 4), 
      col = colors[i], 
      alpha = 0.5
    )

    # 绘制顶面
    quads3d(
      x = c(x0, x0, x1, x1), 
      y = c(y0, y1, y1, y0), 
      z = rep(z1, 4), 
      col = colors[i], 
      alpha = 0.5
    )

    # 绘制侧面
    quads3d(
      x = c(x0, x0, x0, x0), 
      y = c(y0, y1, y1, y0), 
      z = c(z0, z0, z1, z1), 
      col = colors[i], 
      alpha = 0.5
    )
    
    quads3d(
      x = c(x1, x1, x1, x1), 
      y = c(y0, y1, y1, y0), 
      z = c(z0, z0, z1, z1), 
      col = colors[i], 
      alpha = 0.5
    )
  }
}

# 添加坐标轴和标题
axes3d(edges = "bbox", xlab = "Value", ylab = "Group", zlab = "Frequency", box = TRUE)
title3d("3D Histogram", xlab = "Value", ylab = "Group", zlab = "Frequency")

解析

1. 坐标轴: 使用 axes3d 函数绘制坐标轴和标签,edges = “bbox” 表示显示边界框的坐标轴
2. 柱体: 每个柱体的底面、顶面和侧面都用 quads3d 绘制
3. 颜色: 使用 rainbow 函数生成颜色,并将其应用于每组数据的柱体

效果

在这里插入图片描述

等高线图

使用 plotly 包(方式1)

示例

# 安装和加载必要的包
install.packages("plotly")
library(plotly)

# 生成示例数据
n <- 50
x <- seq(-10, 10, length.out = n)
y <- seq(-10, 10, length.out = n)
z <- outer(x, y, function(x, y) sin(sqrt(x^2 + y^2)))

# 绘制3D等高线图
plot_ly(z = ~z, x = ~x, y = ~y, type = "surface") %>%
  layout(title = "3D Terrain Plot",
         scene = list(
           xaxis = list(title = "X"),
           yaxis = list(title = "Y"),
           zaxis = list(title = "Z")
         ))

解析

  • plot_ly 函数用于绘制图形,type = “surface” 指定绘制3D等高线图
  • layout 函数用于设置图形的标题和坐标轴标签

效果

在这里插入图片描述

使用 plotly 包(方式2)

示例

library(plotly)

# 生成示例数据
set.seed(123)
x <- rnorm(100)
y <- rnorm(100)
z <- rnorm(100)

# 创建等高线图数据
x_bins <- seq(min(x), max(x), length.out = 10)
y_bins <- seq(min(y), max(y), length.out = 10)
x_cut <- cut(x, breaks = x_bins)
y_cut <- cut(y, breaks = y_bins)

# 计算每个箱子中的数据量
hist_data <- table(x_cut, y_cut)

# 转换为矩阵格式
z_data <- as.matrix(hist_data)

# 绘制3D直方图
plot_ly(
  z = z_data,
  type = 'surface',
  colorscale = list(c(0, 1), c('blue', 'red')),
  colorbar = list(title = 'Count')
) %>%
  layout(
    title = "3D Histogram",
    scene = list(
      xaxis = list(title = 'X'),
      yaxis = list(title = 'Y'),
      zaxis = list(title = 'Count')
    )
  )

解析

1. 生成数据:

  • 生成 x, y, z 随机数据

2. 计算直方图数据:

  • 使用 cut 将 x 和 y 数据分箱
  • 使用 table 计算每个箱子的频数

3. 绘制等高线图:

  • 使用 plot_ly 和 type = ‘surface’ 绘制3D表面图
  • 传递 z_data 矩阵表示每个箱子的频数
  • colorscale 和 colorbar 用于设置颜色和图例

效果

在这里插入图片描述

曲线图

示例

# 加载必要的包
library(plotly)

# 生成 3D 螺旋曲线数据
t <- seq(0, 10 * pi, length.out = 100)
x <- sin(t)
y <- cos(t)
z <- t

# 创建数据框
data <- data.frame(
  t = t,
  x = x,
  y = y,
  z = z
)

# 绘制 3D 曲线图
fig <- plot_ly(
  data = data,
  x = ~x,
  y = ~y,
  z = ~z,
  type = 'scatter3d',
  mode = 'lines',
  line = list(width = 4, color = 'blue')
) %>%
  layout(
    scene = list(
      xaxis = list(title = 'X Axis'),
      yaxis = list(title = 'Y Axis'),
      zaxis = list(title = 'Z Axis')
    )
  )

# 显示图形
fig

解析

1. 生成 3D 螺旋曲线数据:

  • t 是参数,用于生成曲线的点
  • x 和 y 是通过 sin(t) 和 cos(t) 生成的曲线的横纵坐标
  • z 是随 t 增长的直线分量,用于使曲线在 z 轴上上升

2. 创建数据框:

  • 将生成的数据存储在数据框 data 中,以便用于绘图

3. 绘制 3D 曲线图:

  • plot_ly() 函数用于创建图形对象,type = ‘scatter3d’ 表示绘制 3D 散点图,而 mode = ‘lines’ 指定将点连接成线形成曲线
  • line 参数用于设置线条的宽度和颜色

4. 设置布局:

  • layout() 函数用于设置坐标轴的标题以及其他图形布局选项

效果

在这里插入图片描述

热力图

示例

# 加载必要的包
library(plotly)

# 生成模拟数据
set.seed(123)
x <- seq(-10, 10, length.out = 30)
y <- seq(-10, 10, length.out = 30)
z <- seq(-10, 10, length.out = 30)
data <- expand.grid(x = x, y = y, z = z)

# 计算热力图值,这里使用一个简单的函数作为例子
data$values <- with(data, sin(sqrt(x^2 + y^2 + z^2)))

# 绘制 3D 热力图
fig <- plot_ly(
  data,
  x = ~x,
  y = ~y,
  z = ~z,
  color = ~values,
  colors = colorRamp(c('blue', 'green', 'yellow', 'red')),
  type = 'mesh3d',
  intensity = ~values
) %>%
  layout(
    scene = list(
      xaxis = list(title = 'X Axis'),
      yaxis = list(title = 'Y Axis'),
      zaxis = list(title = 'Z Axis')
    ),
    coloraxis = list(colorbar = list(title = 'Intensity'))
  )

# 显示图形
fig

解析

1. 生成模拟数据:

  • x、y 和 z 是三维网格的坐标轴,使用 seq() 函数生成从 -10 到 10 的数据
  • expand.grid() 函数生成所有可能的 (x, y, z) 组合

2. 计算热力图值:

  • data$values 是我们用来表示热力图强度的数据,这里使用一个简单的 sin(sqrt(x^2 + y^2 + z^2)) 函数计算值,可以根据需要替换为实际数据或其他函数

3. 绘制 3D 热力图:

  • plot_ly() 函数创建图形对象,type = ‘mesh3d’ 指定绘制 3D 网格图,intensity 参数设置为热力图的值
  • colorRamp() 函数定义颜色渐变,展示不同强度的区域

4. 设置布局:

  • layout() 函数用于设置坐标轴标题和颜色条

效果

在这里插入图片描述

雷达图

示例

library(plotly)
library(dplyr)

# 生成示例数据
data <- data.frame(
  axis = c("A", "B", "C", "D", "E"),
  value = c(3, 4, 2, 5, 4)
)

# 转换数据为适合绘图的格式
n <- nrow(data)
theta <- seq(0, 2 * pi, length.out = n + 1)
r <- c(data$value, data$value[1])
x <- r * cos(theta)
y <- r * sin(theta)

# 创建3D雷达图
plot_ly(
  x = ~x,
  y = ~y,
  z = ~rep(0, length(x)),
  type = 'scatter3d',
  mode = 'lines+markers',
  line = list(color = 'blue'),
  marker = list(size = 5, color = 'blue')
) %>%
  layout(
    scene = list(
      xaxis = list(title = 'X'),
      yaxis = list(title = 'Y'),
      zaxis = list(title = 'Z', visible = FALSE)
    ),
    title = '3D Radar Plot'
  )

效果

在这里插入图片描述

韦恩图

示例

# 加载必要的包
library(plotly)

# 定义 3D 圆的参数
circle_radius <- 1
n_points <- 100
theta <- seq(0, 2 * pi, length.out = n_points)

# 计算圆的 x 和 y 坐标
circle_x <- circle_radius * cos(theta)
circle_y <- circle_radius * sin(theta)

# 生成 3 个圆的坐标
circle1 <- data.frame(x = circle_x, y = circle_y, z = 0)
circle2 <- data.frame(x = circle_x - 0.5, y = circle_y - 0.5, z = 0)
circle3 <- data.frame(x = circle_x + 0.5, y = circle_y - 0.5, z = 0)

# 创建一个 3D 图形
fig <- plot_ly() %>%
  # 添加圆1
  add_trace(
    x = circle1$x,
    y = circle1$y,
    z = circle1$z,
    type = 'scatter3d',
    mode = 'lines',
    line = list(width = 2, color = 'blue'),
    name = 'Circle 1'
  ) %>%
  # 添加圆2
  add_trace(
    x = circle2$x,
    y = circle2$y,
    z = circle2$z,
    type = 'scatter3d',
    mode = 'lines',
    line = list(width = 2, color = 'green'),
    name = 'Circle 2'
  ) %>%
  # 添加圆3
  add_trace(
    x = circle3$x,
    y = circle3$y,
    z = circle3$z,
    type = 'scatter3d',
    mode = 'lines',
    line = list(width = 2, color = 'red'),
    name = 'Circle 3'
  ) %>%
  layout(
    scene = list(
      xaxis = list(title = 'X Axis'),
      yaxis = list(title = 'Y Axis'),
      zaxis = list(title = 'Z Axis')
    ),
    title = '3D Venn Diagram'
  )

# 显示图形
fig

解析

1. 定义圆的参数:

  • circle_radius 为圆的半径
  • n_points 设置圆上点的数量以确保圆的平滑

2. 计算圆的坐标:

  • 使用 cos 和 sin 函数计算圆的 x 和 y 坐标
  • 创建三个不同位置的圆(通过调整 x 和 y 的位置)

3. 创建 3D 图形:

  • 使用 plot_ly() 创建图形对象
  • add_trace() 函数用于添加每个圆的坐标
  • layout() 设置坐标轴标题和图形标题

效果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1939958.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法日记day 16(二叉树的广度优先遍历|反转、对称二叉树)

一、二叉树的层序遍历 题目&#xff1a; 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3]…

使用 PVE 自签 CA 证书签发新证书

前言 PVE 安装时会自动创建一个有效期 10 年的 CA 证书, 我们可以利用这个 CA 证书给虚拟机中的 Web 应用签发新的 TLS 证书用于提供 HTTPS 服务. 下面以 PVE 虚拟机中通过 Docker 跑的一个 雷池 应用为例进行演示. PVE 证书位置 官方文档: https://pve.proxmox.com/wiki/Pr…

【BUG】已解决:TypeError: Descriptors cannot not be created directly.

已解决&#xff1a;TypeError: Descriptors cannot not be created directly. 目录 已解决&#xff1a;TypeError: Descriptors cannot not be created directly. 【常见模块错误】 【错误原因】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来…

STM32项目分享:智能宠物喂食系统

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 1.PCB图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片&#xff1a; 哔哩哔哩视频链接&#xff1a; https://www.bilibili.com/video/BV1zy411z7…

知名在线市场 Etsy 允许在其平台上销售 AI 艺术品,但有条件限制|TodayAI

近日&#xff0c;以手工和复古商品著称的在线市场 Etsy 宣布&#xff0c;将允许在其平台上销售 AI 生成的艺术品。这一举措引发了广泛关注和争议。尽管 Etsy 正在接受 AI 艺术的潮流&#xff0c;但平台对这一类商品的销售设置了一些限制。 根据 Etsy 新发布的政策&#xff0c;…

C#开发:PowerDesigner建表和Navicat导入数据

一、打开Powerdesigner&#xff0c;新建一个模型&#xff0c;点击ok 二、用工具面板拖拽出一个数据表 &#xff08;如果没有工具面板&#xff0c;请在如下操作中开启&#xff09; 三、双击刚刚的拖拽出来的表&#xff0c;设计表的字段&#xff0c;可以添加注释说明 【备注】…

开源智能助手平台Dify是什么?

1.背景 对于国内小公司&#xff0c;怎样通过Ai 将内部流程、产品重新做一次&#xff0c;从而提高人效、给客户带来价值&#xff0c;这是老板们在考虑的问题 &#xff1f; 当前市面上的你大模型例如&#xff1a;通义千问、文心一言、kimi、智谱清言、盘古 等&#xff0c;底层能…

【LeetCode】填充每个节点的下一个右侧节点指针 II

目录 一、题目二、解法完整代码 一、题目 给定一个二叉树&#xff1a; struct Node { int val; Node *left; Node *right; Node *next; } 填充它的每个 next 指针&#xff0c;让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点&#xff0c;则将 next 指针设置为 NUL…

【栈和队列】算法题 ---- 力扣

通过前面栈和队列的学习&#xff0c;现在来看这些算法题目 一、有效的括号 本题让判断括号是否有效 第一眼看可能没一点思路&#xff0c;但仔细分析一下&#xff1b; 我们学习过栈数据结构&#xff0c;知道栈先进后出的原则&#xff0c;那我们就可以使用啊&#xff1b;把题目的…

认识和安装R的扩展包,什么是模糊搜索安装,工作目录和空间的区别与设置

R语言以其强大的功能和灵活的扩展性,成为了无数数据分析师和研究者的首选工具。R的丰富功能和海量扩展包直接相关,但如何高效管理这些扩展包,进而充分发挥R的强大潜力?本文将为您揭示这些问题的答案。 一、R的扩展包 R的包(packages)是由R函数、数据和预编译代码组成的一…

PyQT6---环境搭建

1、虚拟环境搭建 创建虚拟环境 create -n pyqt6_39 python3.9 切换虚拟环境 conda activate pyqt6_39 2、安装pyqt6 安装pyqt6和pyqt6-tools pip install PyQt6 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install pyqt6-tools -i https://pypi.tuna.tsinghua.edu.cn/…

关卡1-3:Git

关卡1-3&#xff1a;Git Git基础fork并拉取本次课程的源创建一个gitee自己的仓库 这个是internLM的3期训练营的通关笔记。 任务&#xff1a; 熟悉git熟悉使用git托管平台&#xff0c;常见有github、giteefork官方的训练营的教程项目&#xff0c;提交文件到自己的项目&#xf…

算法力扣刷题记录 五十六【501.二叉搜索树中的众数】

前言 二叉搜索树操作&#xff0c;继续。 记录 五十六【501.二叉搜索树中的众数】 一、题目阅读 给你一个含重复值的二叉搜索树&#xff08;BST&#xff09;的根节点 root &#xff0c;找出并返回 BST 中的所有 众数&#xff08;即&#xff0c;出现频率最高的元素&#xff09;…

基于机器学习的二手房价格分析与预测设计与实现

概述 随着西安房地产市场的不断发展和变化&#xff0c;对二手房价格的准确预测变得至关重要。本研究旨在利用机器学习技术对西安市二手房价格进行深入分析与预测&#xff0c;通过对原始数据进行数据预处理和特征提取&#xff0c;以构建有效的预测模型。通过数据分析和可视化&a…

IP数据报结构详解:从基础到进阶

目录 IP数据报的格式 IP数据报首部的固定部分 IP数据报首部的可变部分 实例分析&#xff1a;数据报的分片 生存时间&#xff08;TTL&#xff09;与协议 首部检验和 总结 在网络通信中&#xff0c;IP数据报是至关重要的基本单元。本文将带您深入了解IP数据报的格式及其各个…

Java | Leetcode Java题解之第264题丑数II

题目&#xff1a; 题解&#xff1a; class Solution {public int nthUglyNumber(int n) {int[] dp new int[n 1];dp[1] 1;int p2 1, p3 1, p5 1;for (int i 2; i < n; i) {int num2 dp[p2] * 2, num3 dp[p3] * 3, num5 dp[p5] * 5;dp[i] Math.min(Math.min(num2…

C语言顺序表插入删除 尾删 任意删除 任意插入 链表头插

各位少年&#xff0c;大家好我是小敖 &#xff0c;今天给大家分享 顺序表的头删 尾删&#xff0c;任意删除&#xff0c;任意插入&#xff0c;链表头插。接下来跟大家分享。 头插的操作 c void SLPushFront(SL*psl, SLDatatype x) {SLCheckCapacity(psl); int end psl->siz…

stm32平台为例的软件模拟时间,代替RTC调试

stm32平台为例的软件模拟时间&#xff0c;代替RTC调试 我们在开发项目的时候&#xff0c;如果用到RTC&#xff0c;如果真正等待RTC到达指定的时间&#xff0c;那调试时间就太长了。 比如每隔半个小时&#xff0c;存储一次数据&#xff0c;如果要观察10次存储的效果&#xff0…

nginx通过nginx_upstream_check_module实现后端健康检查

1、简介说明 nginx是常用的反向代理和负载均衡服务&#xff0c;具有强大并发能力、稳定性、丰富的功能集、低资源的消耗。 nginx自身是没有针对后端节点健康检查的&#xff0c;但是可以通过默认自带的ngx_http_proxy_module 模块和ngx_http_upstream_module模块中的相关指令来完…

LDR6020双盲插便携显示器应用

随着USB Type-C接口的普及&#xff0c;越来越多的手机和笔记本电脑都支持通过C接口输出视频。这个小巧而精密的接口&#xff0c;大有把传统的HDMI和DisplayPort接口取而代之的架势。特别是usb4的推出&#xff0c;更是为USB TYPE-C接口一统有线接口形态奠定了基础。 单USB-C接口…