昇思25天学习打卡营第30天 | MindNLP ChatGLM-6B StreamChat

news2024/11/15 7:49:04

今天是第30天,学习了MindNLP ChatGLM-6B StreamChat。

今天是参加打卡活动的最后一天,经过这些日子的测试,昇思MindSpore效果还是不错的。

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,具有62亿参数,基于 General Language Model(GLM)架构。
它使用了和 ChatGPT 相似的技术,并针对中文问答和对话进行了优化。经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,ChatGLM-6B 能够生成相当符合人类偏好的回答。

ChatGLM-6B 有如下特点:充分的中英双语预训练: ChatGLM-6B 在 1:1 比例的中英语料上训练了 1T 的 token 量,兼具双语能力。优化的模型架构和大小: 吸取 GLM-130B 训练经验,修正了二维 RoPE 位置编码实现,使用传统 FFN 结构。6B(62亿)的参数大小,也使得研究者和个人开发者自己微调和部署 ChatGLM-6B 成为可能。较低的部署门槛: FP16 半精度下,ChatGLM-6B 需要至少 13GB 的显存进行推理,结合模型量化技术,这一需求可以进一步降低到 10GB(INT8) 和 6GB(INT4), 使得 ChatGLM-6B 可以部署在消费级显卡上。更长的序列长度: 相比 GLM-10B(序列长度1024),ChatGLM-6B 序列长度达 2048,支持更长对话和应用。人类意图对齐训练: 使用了监督微调(Supervised Fine-Tuning)、反馈自助(Feedback Bootstrap)、人类反馈强化学习(Reinforcement Learning from Human Feedback) 等方式,使模型初具理解人类指令意图的能力。输出格式为 markdown,方便展示。

ChatGLM-6B 结合了模型量化技术,用户可以在消费级的显卡上进行本地部署。例如,在 int4 量化级别下最低只需 6GB 显存。为了方便下游开发者针对自己的应用场景定制模型,它还实现了基于 P-tuning v2 的高效参数微调方法,在 int4 量化级别下最低只需 7GB 显存即可启动微调。
不过,由于其规模较小,目前已知 ChatGLM-6B 具有一些局限性,如可能存在事实性/数学逻辑错误,或许会生成有害/有偏见内容,具有较弱的上下文能力、自我认知混乱,以及对英文指示生成与中文指示完全矛盾的内容等。

在实际应用中,需根据具体的硬件需求和使用场景进行选择和部署。其硬件需求如下:
FP16(无量化):推理最低需要 13GB GPU 显存,高效参数微调最低需要 14GB GPU 显存;
INT8:推理最低需要 8GB GPU 显存,高效参数微调最低需要 9GB GPU 显存;
INT4:推理最低需要 6GB GPU 显存,高效参数微调最低需要 7GB GPU 显存。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1935584.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

业务系统核心模块资料访问性能优化实战

随着业务系统的云化转型不断推进,业务量呈现显著增长,对业务系统的性能和资源管理提出了更高要求。在这样的背景下,实现系统资源使用与性能指标的均衡成为保障生产系统高效稳定运行的核心任务。 在性能优化的范畴内,核心业务系统对…

Linux 10:进程信号

信号示例: 用户输入命令,在Shell下启动一个前台进程: 用户按[CtrlC],这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程。前台进程因为收到信号,进而引起进程退出。 注意&…

2048小游戏,h5,纯前端

部分代码 //scorevar scoreSprite game.add.sprite(10, 10);var scoreGraphics game.add.graphics(0, 0);scoreGraphics.lineStyle(5, 0xA1C5C5);scoreGraphics.beginFill(0x308C8C);scoreGraphics.drawRoundedRect(0, 0, 70, 50, 10);scoreGraphics.endFill();scoreSprite.a…

端到端语音识别

端到端语音识别 一.端到端语音识别的动机 1.传统语音识别语言模型训练 2.传统语音识别缺点 流程复杂且繁琐: 传统的语音识别系统涉及的流程非常多且复杂,从数据准备、模型训练到最终的系统集成,每个步骤都需要仔细处理。入门门槛高&#x…

WEB前端07-DOM对象

DOM模型 1.DOM概念 文档对象模型属于BOM的一 部分,用于对BOM中的核心对象document进行操作,它是一种与平台、语言无关的接口,允许程序和脚本动态地访问或更新HTML、XML文档的内容、结构和样式,且提供了一系列的函数和对象来实现…

近几天,北京大学副校长、教务长王博亲自为藏族女孩送上北京大学首封录取通知书!

藏族女孩代吉永措收到了北京大学2024年首封本科录取通知书。她来自青海湟川中学,已被北京大学历史学科强基计划录取,即将就读于北京大学历史学系。北京大学副校长、教务长王博亲自为代吉永措送上了这份录取通知书,并与她亲切交流了未来的学习…

Linux介绍和文件管理

一Linux的起源 1.Unix Dennis Ritchie和Ken Thompson发明了C语言,而后写出了Unix的内核 2.Minix MINIX是一种基于微 内核架构的类UNIX计算机操作系统,由 Andrew S. Tanenbaum发明 3.Linux内核 芬兰赫尔辛基大学的研究生Linus Torvalds基于Gcc、 ba…

注册安全分析报告:OneApm

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …

C语言 ——— 打印水仙花数

目录 何为水仙花数 题目要求 代码实现 何为水仙花数 “水仙花数”是指一个n位数,其各位数字的n次方之和等于该数本身 如:153 1^3 5^3 3^3,则153就是一个“水仙花数” 题目要求 求出0~100000的所有“水仙花数”并输出 代码实现 #i…

万字 AI 干货及感悟分享

最近一直在研究 AI Agent 在零代码平台中的应用, 特地研究并总结了一份AI学习的干货, 方便大家快速理解LLM, 并熟悉主流的AI大模型框架, 以及如何基于AI, 来改善我们传统的工作模式. 上面是本文的核心大纲, 接下来开始我的分享和总结. LLM介绍 1. LLM概念 大语言模型&#x…

【安当产品应用案例100集】001 — 基于UKEY的文件加密流转

随着企业信息化程度的不断提高,数据已成为企业最重要的资产之一。然而,数据泄露的风险也随之增加。数据泄露可能导致企业商业机密泄露、客户隐私泄露、经济损失以及法律诉讼等一系列严重后果。因此,保护数据安全已成为企业不可忽视的重要任务…

互联网行业的产品方向(二)

数字与策略产品 大数据时代,数据的价值越来越重要。大多数公司开始对内外全部数据进行管理与挖掘,将业务数据化,数据资产化,资产业务化,将数据产品赋能业务,通过数据驱动公司业务发展,支撑公司战…

3112. 访问消失节点的最少时间 Medium

给你一个二维数组 edges 表示一个 n 个点的无向图,其中 edges[i] [ui, vi, lengthi] 表示节点 ui 和节点 vi 之间有一条需要 lengthi 单位时间通过的无向边。 同时给你一个数组 disappear ,其中 disappear[i] 表示节点 i 从图中消失的时间点&#xff0…

Linux-交换空间(Swap)管理

引入概念 在计算机中,硬盘的容量一般比内存大,内存(4GB 8GB 16GB 32GB 64GB…),硬盘(512GB 1T 2T…)。 冯诺依曼的现代计算机结构体系里面的存储器就是内存 内存是一种易失性存储器&#xff0c…

如何在 PostgreSQL 中处理海量数据的存储和检索?

🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!📚领书:PostgreSQL 入门到精通.pdf 文章目录 如何在 PostgreSQL 中处理海量数据的存储和检索?一、优化表结构设计二、分区技术三、数据压…

二叉树的后序遍历(寻找重复的子树,序列化

class Solution {List<TreeNode> resnew LinkedList<>();Map<String,Integer> mapnew HashMap<>();//用于存储子树public List<TreeNode> findDuplicateSubtrees(TreeNode root) {String xfind(root);return res;}public String find(TreeNode r…

HZNUCTF2023中web相关题目

[HZNUCTF 2023 preliminary]guessguessguess 这道题目打不开了 [HZNUCTF 2023 preliminary]flask 这道题目考察SSTI倒序的模板注入&#xff0c;以及用env命令获得flag 看题目&#xff0c;猜测是SSTI模板注入&#xff0c;先输入{7*7},发现模板是倒序输入的 输入}}7*7{{返回77…

springboot nacos的各种注解、手动操作监听配置变化(监听指定DataId/监听任何变化)

文章目录 springboot nacos监听配置变化&#xff08;监听指定DataId/监听任何变化&#xff09;监听任何配置变化Nacos注解NacosConfigurationPropertiesNacosValueNacosConfigListenerNacosInjectedNacosConfigServiceNacosNamingService springboot nacos监听配置变化&#xf…

OpenAI 开打价格战,GPT-4o 最新变种价格骤降 96%-97%

当地时间周四早晨&#xff0c;美国人工智能初创公司 OpenAI 宣布&#xff0c;正式上架价格显著下降的新一代入门级别人工智能「小模型」GPT-4o mini。 价格比较&#xff5c;图片来源&#xff1a;Artificial Analysis 据 OpenAI 披露&#xff0c;GPT-4o mini 的 API 价格将会是…

【AI大模型Agent探索】深入探索实践 Qwen-Agent 的 Function Calling

系列篇章&#x1f4a5; No.文章1【Qwen部署实战】探索Qwen-7B-Chat&#xff1a;阿里云大型语言模型的对话实践2【Qwen2部署实战】Qwen2初体验&#xff1a;用Transformers打造智能聊天机器人3【Qwen2部署实战】探索Qwen2-7B&#xff1a;通过FastApi框架实现API的部署与调用4【Q…