业务系统核心模块资料访问性能优化实战

news2024/11/15 7:46:07

随着业务系统的云化转型不断推进,业务量呈现显著增长,对业务系统的性能和资源管理提出了更高要求。在这样的背景下,实现系统资源使用与性能指标的均衡成为保障生产系统高效稳定运行的核心任务。

在性能优化的范畴内,核心业务系统对于用户信息查询的处理能力需具备高度性能及精确性,这部分优化向来都是最具挑战性的任务。普通的缓存机制往往无法满足这些严格的需求。因此,我们采取了分布式内存数据库,即高级缓存策略,于应用客户端构建起高效且精确的本地缓存机制,以应对这一难题。然而,随着用户数量及数据量的持续增长,高速缓存对内存资源的消耗也在持续扩大。如何在内存占用与业务性能之间达成有效的平衡,成为系统后续演进及效能提升的关键所在。

为解决相关问题,浩鲸科技提出了一种创新的性能优化策略。该策略主要涉及对系统内各模块中相同维度数据查询频率的深入分析,以开发出高频数据缓存技术,目标是减少批量话单处理中的重复数据查询效率问题,实现无干扰的高精度数据缓存复用。

在某省的云迁移项目实际对账操作中,这项技术与高速缓存技术相融合,成功实现了性能的整体提升,范围在2.4至7倍之间,同时显著减少了应用服务器的内存占用,降低了约20%。最终,实现了超过23万的话单处理端到端性能提升,以及部分模块40万+的处理性能巨幅增长。

某省采用新方案后的业务系统性能优化效果

01 业务系统资料查询优化迫在眉睫

系统实现了应用与数据的解耦,极大地提升了系统的并发处理能力。然而,在某些关键业务场景中,数据访问的时延成为性能瓶颈,尤其是在批价、合账、提醒及账期应用等环节。这些业务对数据访问的速度要求极高,主要体现在以下几个方面:

为了应对这些挑战,采用高速缓存技术进行大规模用户资料的映射存储成为一种有效的策略。这不仅确保了数据的准确性,还提高了数据访问的本地响应速度。然而,随着用户资料量的持续增长,单个宿主机的内存占用也从200+GB上升到了400+GB。这种趋势表明,单靠高速缓存技术已难以满足现有需求。

因此,在高频查询、批量查询的业务场景下,如何在减少内存占用的同时,确保核心业务系统中用户资料的低时延查询,已成为优化业务系统性能的关键任务。这不仅是技术上的挑战,更是业务发展的必然要求。

02 业务系统资料访问场景分析

为了解决上述问题,我们对业务数据的访问特性进行了深入分析。在排除了涉及账期应用的全面遍历查询情况后,问题的核心集中在批量查询和高频率查询的场景上。

高频查询类业务性能瓶颈分析

在处理话单业务的场景中,高频查询指的是那些频繁需要进行数据检索的操作。在云计算的架构下,每次对数据的访问都会引起一定的网络性能损失。随着这种访问频率的增加,系统的整体性能将以指数方式递减。

某省话单压测数据访问与访问频率汇总

在实际操作中,以实例数据为核心的高频访问操作往往涉及对单个话单的访问超过6次,且频繁出现对相同数据的重复查询。通过深入的场景配置分析,我们追溯到这一现象的根源在于话单处理的内部属性与外部属性之间的显著差异。在处理话单的过程中,尤其是对于定价领域的参照值,常常需要结合外部属性进行操作。这些外部属性各自独立,互不干涉,也因此无法自动判断数据是否可以进行关联复用。

批量查询类业务性能瓶颈分析

批量查询的设计意图在于一次性通过远程交互获取多项数据,以此显著降低单条数据检索的等待时间。理论上,这种平均化的时间延迟不应对系统性能产生根本性的影响,即使不使用高速缓存。然而,实际的测试表现并未达到预期标准。

并发批量查询时万兆网上行带宽占满

监控数据显示,一旦部分表从高速缓存中移出,组网的万兆带宽会立即被占满。这表明,单从业务场景和监控数据进行分析已不足够,需要结合更细致的业务访问操作进行综合分析,并对每张表的访问频率和带宽资源占用进行量化。

为了细致分析业务实际访问的操作,团队迅速完善了业务数据访问接口的调用链埋点,实现了表级别的接口数据采集。同时,对访问维度进行了数据接口级别的埋点,特别关注了关键维度如销售品、用户和实例等。通过对163355条话单的测试分析,我们获得了以下关键数据:

某省话单压测数据访问与带宽关系汇总

通过数据分析,发现产品实例关系表的批量查询操作中,单次查询平均返回1083条记录,每条数据的网络开销极小。然而,在12万TPS的负载下,这种操作将达到万兆带宽的上限,这与监控验证的结论相符。

资料访问场景分析总结

综上所述,对业务系统资料访问中的性能损耗就能做到有的放矢:

对于涉及高频重复查询的表。使用高速缓存方案存储会占用几百GB的内存,而全集数据使用并不频繁,导致大量内存均存在冗余浪费。因此,需要重新设计更合理的缓存策略。

对于涉及批量查询的产品实例关系表。业务会在短期内扫描大量数据,导致万兆网带宽立即占满,而产生影响的表仅为产品实例关系表。因此,需要考虑采用高速缓存并只对单表进行缓存支持。

通过这种分治策略,我们可以针对性地解决复杂问题,选择适当的场景应用高速缓存,并对高频重复数据查询的场景进行优化,从而实现业务系统全流程的性能提升。

03 在业务系统资料访问流程优化中有的放矢

高频查询类业务优化:高频资料缓存技术

当前面对的主要问题是优化处理高频重复访问的表操作,实现减少内存开销的前提下,完成业务性能的优化提升。

首先,在该特征下,存储在高速缓存中的大部分数据都非热频数据,导致缓存资源利用率不高。因此,需要将对应场景的数据从高速缓存中移出,从而节约大量内存资源,确保应用系统的资源充足。

其次,将这些重复访问的表按维度进行划分,区分出存在重复数据查询的场景,考虑在重复数据访问的过程中降低性能损耗。

最后,还要考虑对复杂业务系统的稳定性、准确性的影响,如何提升技术方案的可控性也是重中之重。

综上所述,对技术方案提出了如下四点要求:

为了实现上述特征,团队结合现状给出了一种高频资料缓存技术,在不依赖任何第三方组件的基础上,对数据访问层(DAO)进行了有效地优化,具体方案如下:

方案结合当前业务现状和产品特性,在DAO层采取了一系列先进的缓存管理策略,确保数据处理的优化与资源的最大化利用:

零侵入的方案实践效果:得益于业务系统架构的高可扩展性及先进性,高频资料缓存方案在DAO层就能完成维度数据缓存,对业务流程完全零侵入。

高准确的缓存留存机制:数据在DAO层按指定维度进行缓存,对相同维度的个性化SQL进行动态拆分处理,实现了单次缓存匹配多个数据接口的效果。应用在处理完指定批次话单数据后,还会及时销毁缓存中的数据,确保数据的准确有效。

精细化的数据缓存策略:业务系统应用针对每个批次的话单数据,特别是那些需要频繁访问且数据量较大的数据,执行专门的缓存策略。这些数据按红黑树进行存储,被缓存到定制的私有内存中,从而显著减少了系统与外部任何数据源的交互频率和相关开销。这不仅提高了数据处理的响应速度,也优化了系统资源的使用,单进程开销低于20MB。

通过这些策略的实施,业务系统不仅提高了处理效率,还确保了数据的安全性和准确性,为生产业务提供了更加可靠和高效的服务。

批量访问类业务优化:高速缓存单表适配

在特定的批量访问情境中,可能会出现带宽资源被过度消耗的情况,其根本原因在于一次性检索返回的数据量过大。鉴于该省的产品实例关联表数据不超过3亿条,预计内存消耗约为20GB。因此,我们建议采用高速缓存结合单表支持的策略,以此来显著降低带宽使用,缓解服务器负荷,同时确保数据访问的高效性和精确性。

04

系统优化成效

随着业务范围的持续扩展,业务系统正遭遇日益增长的性能压力。为了解决这些挑战并提高系统效率,我们的团队采取了一系列创新技术策略,特别是对高频数据缓存的优化工作:

☑️ 我们成功地整合了高速缓存技术与业务系统的缓存策略,从而对业务系统的数据查询性能进行了深度优化。这一改进显著加快了数据处理速度,缩短了系统响应时间,同时显著降低了网络带宽的负荷,有效释放了冗余的内存资源。

☑️ 此外,这些措施还显著增强了系统的可扩展性和可靠性,使其能够应对未来业务的快速扩展和增长。这些优化确保了业务系统能够持续提供高效、便捷且稳定的服务,满足当前需求,也为未来可能的变化和技术升级奠定了坚实基础。

☑️ 至关重要的是,这次的系统优化为后续的业务系统模块性能提升提供了宝贵的经验和指导方向。通过不断的技术创新和优化,业务系统将更好地适应业务需求,同时也能提供更广泛的支持和价值创造。

总之,本次优化提升了业务系统的性能和稳定性,也为应对未来的挑战和利用新机遇做好了充分准备,确保业务系统能够在动态的市场环境中实现持续的高质量发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1935583.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux 10:进程信号

信号示例: 用户输入命令,在Shell下启动一个前台进程: 用户按[CtrlC],这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程。前台进程因为收到信号,进而引起进程退出。 注意&…

2048小游戏,h5,纯前端

部分代码 //scorevar scoreSprite game.add.sprite(10, 10);var scoreGraphics game.add.graphics(0, 0);scoreGraphics.lineStyle(5, 0xA1C5C5);scoreGraphics.beginFill(0x308C8C);scoreGraphics.drawRoundedRect(0, 0, 70, 50, 10);scoreGraphics.endFill();scoreSprite.a…

端到端语音识别

端到端语音识别 一.端到端语音识别的动机 1.传统语音识别语言模型训练 2.传统语音识别缺点 流程复杂且繁琐: 传统的语音识别系统涉及的流程非常多且复杂,从数据准备、模型训练到最终的系统集成,每个步骤都需要仔细处理。入门门槛高&#x…

WEB前端07-DOM对象

DOM模型 1.DOM概念 文档对象模型属于BOM的一 部分,用于对BOM中的核心对象document进行操作,它是一种与平台、语言无关的接口,允许程序和脚本动态地访问或更新HTML、XML文档的内容、结构和样式,且提供了一系列的函数和对象来实现…

近几天,北京大学副校长、教务长王博亲自为藏族女孩送上北京大学首封录取通知书!

藏族女孩代吉永措收到了北京大学2024年首封本科录取通知书。她来自青海湟川中学,已被北京大学历史学科强基计划录取,即将就读于北京大学历史学系。北京大学副校长、教务长王博亲自为代吉永措送上了这份录取通知书,并与她亲切交流了未来的学习…

Linux介绍和文件管理

一Linux的起源 1.Unix Dennis Ritchie和Ken Thompson发明了C语言,而后写出了Unix的内核 2.Minix MINIX是一种基于微 内核架构的类UNIX计算机操作系统,由 Andrew S. Tanenbaum发明 3.Linux内核 芬兰赫尔辛基大学的研究生Linus Torvalds基于Gcc、 ba…

注册安全分析报告:OneApm

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞 …

C语言 ——— 打印水仙花数

目录 何为水仙花数 题目要求 代码实现 何为水仙花数 “水仙花数”是指一个n位数,其各位数字的n次方之和等于该数本身 如:153 1^3 5^3 3^3,则153就是一个“水仙花数” 题目要求 求出0~100000的所有“水仙花数”并输出 代码实现 #i…

万字 AI 干货及感悟分享

最近一直在研究 AI Agent 在零代码平台中的应用, 特地研究并总结了一份AI学习的干货, 方便大家快速理解LLM, 并熟悉主流的AI大模型框架, 以及如何基于AI, 来改善我们传统的工作模式. 上面是本文的核心大纲, 接下来开始我的分享和总结. LLM介绍 1. LLM概念 大语言模型&#x…

【安当产品应用案例100集】001 — 基于UKEY的文件加密流转

随着企业信息化程度的不断提高,数据已成为企业最重要的资产之一。然而,数据泄露的风险也随之增加。数据泄露可能导致企业商业机密泄露、客户隐私泄露、经济损失以及法律诉讼等一系列严重后果。因此,保护数据安全已成为企业不可忽视的重要任务…

互联网行业的产品方向(二)

数字与策略产品 大数据时代,数据的价值越来越重要。大多数公司开始对内外全部数据进行管理与挖掘,将业务数据化,数据资产化,资产业务化,将数据产品赋能业务,通过数据驱动公司业务发展,支撑公司战…

3112. 访问消失节点的最少时间 Medium

给你一个二维数组 edges 表示一个 n 个点的无向图,其中 edges[i] [ui, vi, lengthi] 表示节点 ui 和节点 vi 之间有一条需要 lengthi 单位时间通过的无向边。 同时给你一个数组 disappear ,其中 disappear[i] 表示节点 i 从图中消失的时间点&#xff0…

Linux-交换空间(Swap)管理

引入概念 在计算机中,硬盘的容量一般比内存大,内存(4GB 8GB 16GB 32GB 64GB…),硬盘(512GB 1T 2T…)。 冯诺依曼的现代计算机结构体系里面的存储器就是内存 内存是一种易失性存储器&#xff0c…

如何在 PostgreSQL 中处理海量数据的存储和检索?

🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!📚领书:PostgreSQL 入门到精通.pdf 文章目录 如何在 PostgreSQL 中处理海量数据的存储和检索?一、优化表结构设计二、分区技术三、数据压…

二叉树的后序遍历(寻找重复的子树,序列化

class Solution {List<TreeNode> resnew LinkedList<>();Map<String,Integer> mapnew HashMap<>();//用于存储子树public List<TreeNode> findDuplicateSubtrees(TreeNode root) {String xfind(root);return res;}public String find(TreeNode r…

HZNUCTF2023中web相关题目

[HZNUCTF 2023 preliminary]guessguessguess 这道题目打不开了 [HZNUCTF 2023 preliminary]flask 这道题目考察SSTI倒序的模板注入&#xff0c;以及用env命令获得flag 看题目&#xff0c;猜测是SSTI模板注入&#xff0c;先输入{7*7},发现模板是倒序输入的 输入}}7*7{{返回77…

springboot nacos的各种注解、手动操作监听配置变化(监听指定DataId/监听任何变化)

文章目录 springboot nacos监听配置变化&#xff08;监听指定DataId/监听任何变化&#xff09;监听任何配置变化Nacos注解NacosConfigurationPropertiesNacosValueNacosConfigListenerNacosInjectedNacosConfigServiceNacosNamingService springboot nacos监听配置变化&#xf…

OpenAI 开打价格战,GPT-4o 最新变种价格骤降 96%-97%

当地时间周四早晨&#xff0c;美国人工智能初创公司 OpenAI 宣布&#xff0c;正式上架价格显著下降的新一代入门级别人工智能「小模型」GPT-4o mini。 价格比较&#xff5c;图片来源&#xff1a;Artificial Analysis 据 OpenAI 披露&#xff0c;GPT-4o mini 的 API 价格将会是…

【AI大模型Agent探索】深入探索实践 Qwen-Agent 的 Function Calling

系列篇章&#x1f4a5; No.文章1【Qwen部署实战】探索Qwen-7B-Chat&#xff1a;阿里云大型语言模型的对话实践2【Qwen2部署实战】Qwen2初体验&#xff1a;用Transformers打造智能聊天机器人3【Qwen2部署实战】探索Qwen2-7B&#xff1a;通过FastApi框架实现API的部署与调用4【Q…

django报错(二):NotSupportedError:MySQL 8 or later is required (found 5.7.43)

执行python manage.py runserver命令时报版本不支持错误&#xff0c;显示“MySQL 8 or later is required (found 5.7.43)”。如图&#xff1a; 即要MySQL 8或更高版本。但是企业大所数用的还是mysql5.7相关版本。因为5.7之后的8.x版本是付费版本&#xff0c;贸然更新数据库肯定…