数据挖掘与分析部分实验与实训项目报告

news2024/12/27 2:02:05

一、机器学习算法的应用

1. 朴素贝叶斯分类器

相关代码

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.metrics import accuracy_score
# 将数据加载到DataFrame中,删除ID和ZIP Code列
df = pd.read_csv('universalbank.csv')
df = df.drop(columns=['ID', 'ZIP Code'])
# 以下是使用高斯朴素贝叶斯分类器的代码
# 分离特征和目标变量
X = df.drop(columns=['Personal Loan'])
y = df['Personal Loan']
# 划分数据集
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建高斯朴素贝叶斯分类器实例
gnb = GaussianNB()
# 训练模型
gnb.fit(X_train, y_train)
# 预测测试集
y_pred = gnb.predict(X_test)
# 输出预测结果和模型准确度
print("高斯朴素贝叶斯分类器的预测结果:", y_pred)
print("高斯朴素贝叶斯分类器的准确度:", accuracy_score(y_test, y_pred))
# 以下是使用多项式朴素贝叶斯分类器的代码
# 筛选出离散型特征
X_discrete = df[['Family', 'Education', 'Securities Account', 'CD Account', 'Online', 'CreditCard']]
# 划分数据集
# X_train_discrete, X_test_discrete, y_train, y_test = train_test_split(X_discrete, y, test_size=0.3, random_state=42)
X_train_discrete, X_test_discrete, y_train, y_test = train_test_split(X_discrete, y, test_size=0.3, random_state=0)
# 创建多项式朴素贝叶斯分类器实例
mnb = MultinomialNB()
# 训练模型
mnb.fit(X_train_discrete, y_train)
# 预测测试集
y_pred_discrete = mnb.predict(X_test_discrete)
# 输出预测结果和模型准确度
print("多项式朴素贝叶斯分类器的预测结果:", y_pred_discrete)
print("多项式朴素贝叶斯分类器的准确度:", accuracy_score(y_test, y_pred_discrete))

运行结果

2.K近邻分类器(KNN)

相关代码

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 将数据加载到DataFrame中,删除ID和ZIP Code列
df = pd.read_csv('universalbank.csv')
df = df.drop(columns=['ID', 'ZIP Code'])
# 分离特征和目标变量
X = df.drop(columns=['Personal Loan'])
y = df['Personal Loan']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建KNN分类器实例,设置最近邻的数量K为5
knn = KNeighborsClassifier(n_neighbors=5)
# 训练模型
knn.fit(X_train, y_train)
# 预测测试集
y_pred = knn.predict(X_test)
# 输出预测结果和模型准确度
print("KNN分类器的预测结果:", y_pred)
print("KNN分类器的准确度:", accuracy_score(y_test, y_pred))

运行结果

3. CART决策树

相关代码

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import export_graphviz
import graphviz
# 将数据加载到DataFrame中,删除ID和ZIP Code列
df = pd.read_csv('universalbank.csv')
df = df.drop(columns=['ID', 'ZIP Code'])
# 分离特征和目标变量
X = df.drop(columns=['Personal Loan'])
y = df['Personal Loan']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 创建CART决策树分类器实例,设置决策树的深度限制为10层
dt = DecisionTreeClassifier(max_depth=10, random_state=42)
# 训练模型
dt.fit(X_train, y_train)
# 预测测试集
y_pred = dt.predict(X_test)
# 输出预测结果和模型准确度
print("CART决策树分类器的预测结果:", y_pred)
print("CART决策树分类器的准确度:", accuracy_score(y_test, y_pred))

# 可视化训练好的CART决策树模型
dot_data = export_graphviz(dt, out_file=None,
                           feature_names=X.columns,
                           class_names=['0', '1'],
                           filled=True, rounded=True,
                           special_characters=True)
graph = graphviz.Source(dot_data)
graph.render("universalbank_decision_tree")  # 保存为PDF文件
graph.view()  # 在默认PDF查看器中打开

运行结果

4.神经网络回归任务

相关代码

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor

data = pd.read_csv('house-price.csv')
X = data.iloc[:, 2:14]
y = data.iloc[:, [1]]

# 划分数据集,70%为训练集,30%为测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

# 创建多层感知机回归模型实例,设置隐藏层层数和神经元数量
regressor = MLPRegressor(hidden_layer_sizes=(100, 10), activation="relu")

# 使用训练集数据训练模型
regressor.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测
y_pred = regressor.predict(X_test)

# 计算模型的均方误差(MSE)
mse = np.sum(np.square(y_pred - y_test.values)) / len(y_test)
# 计算模型的平均绝对误差(MAE)
mae = np.sum(np.abs(y_pred - y_test.values)) / len(y_test)

# 输出测试数据的预测结果和模型的MSE和MAE
print('测试数据的预测结果:', y_pred)
print("预测结果和模型的MSE:", mse)
print("预测结果和模型的MAE:", mae)
# 使用训练好的模型对给定的数据进行房价预测
y_ = regressor.predict(np.array([[3.0, 2.5, 1490, 8102, 2.0, 0, 0, 4, 1490, 0, 1990, 0]]))
print('数据[3.0,2.5,1490,8102,2.0,0,0,4,1490,0,1990,0]的预测结果为:', y_)

运行结果

5.神经网络分类任务

相关代码

import pandas as pd
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score

# 将数据加载到DataFrame中
df = pd.read_excel('企业贷款审批数据表.xlsx')
# 选择特征列和目标列
X = df.iloc[:, 1:4]  # 特征列X1, X2, X3
y = df.iloc[:, 4]    # 目标列Y
# 使用前10行数据作为训练集,11-20行数据作为测试集
X_train = X.iloc[:10]
y_train = y.iloc[:10]
X_test = X.iloc[10:20]
y_test = y.iloc[10:20]
# 创建MLP分类模型实例,设置隐藏层层数和神经元数量
mlp = MLPClassifier(hidden_layer_sizes=(10,5), max_iter=1000, random_state=0,verbose=1)
# 训练模型
mlp.fit(X_train, y_train)
# 使用训练好的模型对测试集进行预测
y_pred = mlp.predict(X_test)
# 计算模型的准确度
accuracy = accuracy_score(y_test, y_pred)
# 输出预测结果和模型准确度
print("测试集的预测结果:", y_pred)
print("模型准确度:", accuracy)
# 使用训练好的模型对21-25行数据进行预测
# 给定的数据
new_data = df.iloc[20:, 1:4]
predicted_results = mlp.predict(new_data)
# 输出评估结果
print("21-25行数据的评估结果:", predicted_results)

运行结果

6. 关联规则分析

相关代码

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from tabulate import tabulate
from mlxtend.frequent_patterns import apriori, fpgrowth, association_rules

# (2)数据读取与预处理
data = pd.read_excel('tr.xlsx', keep_default_na=False)
# 将数据转换为适合TransactionEncoder的格式
te = TransactionEncoder()
te_ary = te.fit(data.values).transform(data.values)
# 创建DataFrame
df = pd.DataFrame(te_ary, columns=te.columns_)
# 剔除第3列到第6列
df = df.drop(columns=df.columns[0:9])
# 将True和False替换为1和0
df = df.replace({True: 1, False: 0})
# 使用tabulate库打印DataFrame
# print(tabulate(df, headers='keys', tablefmt='psql'))

# (3)使用apriori算法挖掘频繁项集(最小支持度为0.3)
frequent_itemsets_apriori = apriori(df, min_support=0.3, use_colnames=True)

# (4)使用FP-growth算法挖掘频繁项集(最小支持度为0.3)
frequent_itemsets_fpgrowth = fpgrowth(df, min_support=0.3, use_colnames=True)

# (5)生成强规则(最小置信度为0.5, 提升度>1)
rules = association_rules(frequent_itemsets_apriori, metric='confidence', min_threshold=0.5, support_only=False)
rules = rules[rules['lift'] > 1]

# 输出结果
print("频繁项集(Apriori算法):")
# print(frequent_itemsets_apriori)
print(tabulate(frequent_itemsets_apriori, headers='keys', tablefmt='psql'))
print("\n频繁项集(FP-growth算法):")
# print(frequent_itemsets_fpgrowth)
print(tabulate(frequent_itemsets_fpgrowth, headers='keys', tablefmt='psql'))
print("\n强规则:")
print(rules)

运行结果

7.时间序列分析

相关代码

import pandas as pd
import warnings
from matplotlib import MatplotlibDeprecationWarning
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.stattools import adfuller as ADF
from statsmodels.tsa.arima.model import ARIMA

# 屏蔽所有FutureWarning类型的警告
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning, module="statsmodels")
warnings.filterwarnings("ignore", category=MatplotlibDeprecationWarning)

# 读取数据
data = pd.read_csv('shampoo.csv')

# 假设数据框中日期列名为'Month'
data['Month'] = '2024-' + data['Month']

# 如果需要转换为日期类型(可选)
data['Month'] = pd.to_datetime(data['Month'], format='%Y-%m-%d')
data.rename(columns={'Month': 'Date'}, inplace=True)

# (3)检测序列的平稳性
# 时序图判断法
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.plot(data['Sales'])
plt.legend(['Sales'])
plt.show()

# 制自相关图判断法
plot_acf(data['Sales'])
plt.show()

# 使用ADF单位根检测法
print('原始序列的ADF检验结果为:', ADF(data['Sales']))

# (4)差分处理
# 注意:根据上一步结果判断数据序列为非平稳序列,如想使用模型对数据进行建模,
# 则需将数据转换为平稳序列。所以在这一步使用差分处理对序列进行处理。
Date_data = data['Sales'].diff().dropna()

# 对处理后的序列进行平稳性检测(自相关图法、偏相关图法、ADF检测法)
plot_acf(Date_data)
plt.show()
plot_pacf(Date_data)
plt.show()

print('差分序列的ADF检验结果为:', ADF(Date_data))

# (5)使用ARIMA模型对差分处理后的序列进行建模
# 选择合适的p和q值
pmax = int(len(Date_data)/10)
qmax = int(len(Date_data)/10)
bic_matrix = []
for p in range(pmax + 1):
    tmp = []
    for q in range(qmax + 1):
        try:
            tmp.append(ARIMA(data['Sales'].values, order=(p,1,q)).fit().bic)
        except:
            tmp.append(None)
    bic_matrix.append(tmp)
bic_matrix = pd.DataFrame(bic_matrix)

p, q = bic_matrix.stack().idxmin()
print('BIC最小的p值和q值为:%s、%s' % (p, q))

# 使用模型预测未来5个月的销售额
model = ARIMA(data['Sales'].values, order=(p,1,q)).fit()
print('模型基本报告', model.summary())
print('预测未来5个月的销售额:', model.forecast(5))

运行结果

二、深度学习算法应用

1. TensorFlow框架的基本使用

(1)获取训练数据

构建一个简单的线性模型:W,b为参数,W=2,b=1,运用tf.random.normal() 产生1000个随机数,产生x,y数据。

用matplotlib库,用蓝色绘制训练数据。

import tensorflow as tf
import numpy as np
import warnings
from matplotlib import MatplotlibDeprecationWarning

# 屏蔽所有FutureWarning类型的警告
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning, module="statsmodels")
warnings.filterwarnings("ignore", category=MatplotlibDeprecationWarning)
W = 3.0   # W参数设置
b =1.0    # b参数设置
num = 1000
# x随机输入
x = tf.random.normal(shape=[num])
# 随机偏差
c = tf.random.normal(shape=[num])
# 构造y数据
y = W * x + b + c
# print(x)

# 画图观察
import matplotlib.pyplot as plt    #加载画图库
plt.scatter(x, y, c='b')    # 画离散图
plt.show()    # 展示图
(2)定义模型

通过对样本数据的离散图可以判断,呈线性规律变化,因此可以建立一个线性模型,即 ,把该线性模型定义为一个简单的类,里面封装了变量和计算,变量设置用tf.Variable()。

#定义模型
class LineModel(object):   # 定义一个LineModel的类
    def __init__(self):
        # 初始化变量
        self.W = tf.Variable(5.0)
        self.b = tf.Variable(0.0)
        
    def __call__(self, x):   #定义返回值
        return self.W * x + self.b
    
    def train(self, x, y, learning_rate):   #定义训练函数
        with tf.GradientTape() as t:
            current_loss = loss(self.__call__(x), y)  #损失函数计算
            # 对W,b求导
            d_W, d_b = t.gradient(current_loss, [self.W, self.b])
            # 减去梯度*学习率
            self.W.assign_sub(d_W*learning_rate)  #减法操作
            self.b.assign_sub(d_b*learning_rate)
(3)定义损失函数

损失函数是衡量给定输入的模型输出与期望输出的匹配程度,采用均方误差(L2范数损失函数)。

# 定义损失函数
def loss(predicted_y, true_y):   # 定义损失函数
    return tf.reduce_mean(tf.square(true_y - predicted_y))  # 返回均方误差值
(4)模型训练

运用数据和模型来训练得到模型的变量(W和b),观察W和b的变化(使用matplotlib绘制W和b的变化情况曲线)。

# 求解过程     
model= LineModel()  #运用模型实例化
# 计算W,b参数值的变化
W_s, b_s = [], []    #增加新中间变量
for epoch in range(15):    #循环15次
    W_s.append(model.W.numpy())  #提取模型的W参数添加到中间变量w_s
    b_s.append(model.b.numpy())
    print('model.W.numpy():',model.W.numpy())
    # 计算损失函数loss
    current_loss = loss(model(x), y)
    model.train(x, y, learning_rate=0.1)   # 运用定义的train函数训练
    print('Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f' %
        (epoch, W_s[-1], b_s[-1], current_loss))    #输出训练情况
# 画图,把W,b的参数变化情况画出来
epochs = range(15)   #这个迭代数据与上面循环数据一样
plt.figure(1)
plt.scatter(x, y, c='b')    # 画离散图
plt.plot(x,model(x),c='r')
plt.figure(2)
plt.plot(epochs, W_s, 'r',
         epochs, b_s, 'b')  #画图
plt.plot([W] * len(epochs), 'r--',
         [b] * len(epochs), 'b-*')
plt.legend(['pridect_W', 'pridet_b', 'true_W', 'true_b'])  # 图例
plt.show()

运行结果

2. 多层神经网络分类

(1)数据获取与预处理

MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。

每张图像的大小都是28x28像素。MNIST数据集有60000张图像用于训练和10000张图像用于测试,其中每张图像都被标记了对应的数字(0-9)。

(2)加载数据集
import tensorflow as tf
import matplotlib.pyplot as plt
# 1. 数据获取与预处理
# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train_all, y_train_all), (x_test, y_test) = mnist.load_data()
(3)查看数据集
def show_single_image(img_arr):
    plt.imshow(img_arr, cmap='binary')
    plt.show()

show_single_image(x_train_all[0])
(4)归一化处理
x_train_all, x_test = x_train_all / 255.0, x_test / 255.0

模型构建

(5)模型定义

# 模型定义
model = tf.keras.models.Sequential([  
    #输入层  
    tf.keras.layers.Flatten(input_shape=(28, 28)),  
    #隐藏层1  
    tf.keras.layers.Dense(256, activation=tf.nn.relu),  
    #百分之20的神经元不工作,防止过拟合  
    tf.keras.layers.Dropout(0.2),  
    #隐藏层2  
    tf.keras.layers.Dense(128, activation=tf.nn.relu),  
    #隐藏层3  
    tf.keras.layers.Dense(64, activation=tf.nn.relu),  
    #输出层  
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)  
])
(6)编译模型
#定义优化器,损失函数,训练效果中计算准确率  
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
(7)输出模型参数
# 打印网络参数
print(model.summary())

模型训练

(8)训练
# 训练模型
history = model.fit(x_train_all, y_train_all, epochs=50, validation_split=0.2, verbose=1)
(9)获取训练历史数据中的各指标值
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
(10)绘制指标在训练过程中的变化图
plt.figure(1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.figure(2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
(11)模型评估

使用测试集对模型进行评估

loss, accuracy = model.evaluate(x_test, y_test, verbose=1)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

3. 多层神经网络回归

(1)数据获取与预处理

Auto MPG 数据集,它记录了各种汽车效能指标MPG(Mile Per Gallon)与气缸数、重量、马力等因素的真实数据。除了产地的数字字段表示类别外,其他字段都是数值类型。对于产地地段,1 表示美国,2 表示欧洲,3 表示日本。

(2)加载数据集
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
               'Acceleration', 'Model Year', 'Origin']
raw_dataset = pd.read_csv('./data/auto-mpg.data', names=column_names,
                        na_values="?", comment='\t',
                        sep=" ", skipinitialspace=True)
(3)数据清洗
# 数据清洗
# 统计每列的空值数量
null_counts = raw_dataset.isnull().sum()
# 打印每列的空值数量
print(null_counts)
# 删除包含空值的行
dataset = raw_dataset.dropna()

(4)将Origin列转换为one-hot(独热)编码。
dataset = pd.get_dummies(dataset, columns=['Origin'])
(5)数据探索
  • 使用describe方法查看数据的统计指标
# 使用describe方法查看数据的统计指标
dataset.describe()
  • 使用seaborn库中pairplot方法绘制"MPG", "Cylinders", "Displacement", "Weight"四列的联合分布图
# 使用seaborn库中pairplot方法绘制"MPG", "Cylinders", "Displacement", "Weight"四列的联合分布图
sns.pairplot(dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']])
(6)数据可视化
labels = dataset.pop('MPG')  #从数据集中取出目标值MPG
#数据标准化
from sklearn.preprocessing import StandardScaler
def norm(x):
    return (x - train_stats['mean']) / train_stats['std'] #标准化公式
scaler = StandardScaler()
normed_dataset = scaler.fit_transform(dataset)
(7)划分数据集
X_train, X_test, Y_train, Y_test = train_test_split(normed_dataset, labels, test_size=0.2, random_state=0)

模型构建

(8)模型定义
import tensorflow as tf
model = tf.keras.Sequential([
    tf.keras.layers.Dense(64, activation='relu', input_shape=[X_train.shape[1]]),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(1)
  ])
(9)模型编译
model.compile(loss='mse', optimizer='adam', metrics=['mae', 'mse'])
plt.show()
(10)输出模型参数
# 输出模型参数
print(model.summary())

模型训练

(11)训练
history = model.fit(X_train, Y_train, epochs=100, validation_split=0.2, verbose=1)
(12)获取训练历史数据中的各指标值
mae = history.history['mae']
val_mae = history.history['val_mae']
mse = history.history['mse']
val_mse = history.history['val_mse']
(13)绘制指标在训练过程中的变化图
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(mae, label='Training MAE')
plt.plot(val_mae, label='Validation MAE')
plt.title('Training and Validation MAE')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(mse, label='Training MSE')
plt.plot(val_mse, label='Validation MSE')
plt.title('Training and Validation MSE')
plt.legend()
plt.show()

(14)模型评估

使用测试集对模型进行评估

model.evaluate(X_test, Y_test, verbose=1)

4. 多层神经网络回归

(1)数据获取与预处理

IMDB数据集,有5万条来自网络电影数据库的评论,其中25000千条用来训练,25000用来测试,每个部分正负评论各占50%。和MNIST数据集类似,IMDB数据集也集成在Keras中,同时经过了预处理:电影评论转换成了一系列数字,每个数字代表字典中的一个单词(表示该单词出现频率的排名)

(2)读取数据
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, LSTM, Dense
from tensorflow.keras.callbacks import EarlyStopping
import tensorflow as tf
# 加载数据,评论文本已转换为整数,其中每个整数表示字典中的特定单词
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=10000)
(2)预处理
# 循环神经网络输入长度固定
# 这里应该注意,循环神经网络的输入是固定长度的,否则运行后会出错。
# 由于电影评论的长度必须相同,pad_sequences 函数来标准化评论长度
x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train, maxlen=100)
x_test = tf.keras.preprocessing.sequence.pad_sequences(x_test, maxlen=100)

模型搭建

(3)模型定义
model = Sequential([
    #定义嵌入层
    Embedding(10000,  # 词汇表大小中收录单词数量,也就是嵌入层矩阵的行数
                    128,           # 每个单词的维度,也就是嵌入层矩阵的列数
                    input_length=100),
    # 定义LSTM隐藏层
    LSTM(128, dropout=0.2, recurrent_dropout=0.2),
    # 模型输出层
    Dense(1, activation='sigmoid')
])
(4)编译模型
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

模型训练

(5)训练
history = model.fit(x_train, y_train, epochs=5, validation_split=0.2, verbose=1)
(6)获取训练历史数据中的各指标值
accuracy = history.history['accuracy']
val_accuracy = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
(7)绘制指标在训练过程中的变化图
# 绘制指标在训练过程中的变化图
import matplotlib.pyplot as plt

# plt.figure(1)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(accuracy, label='Training Accuracy')
plt.plot(val_accuracy, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

# plt.figure(2)
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

(8)模型评估

使用测试集对模型进行评估

test_loss, test_acc = model.evaluate(x_test, y_test, verbose=1)
print(f"Test Accuracy: {test_acc}, Test Loss: {test_loss}")

三、数据挖掘综合应用

1.微博评论情感分析

(1)数据读取

新浪微博数据集(网上搜集、作者不详)来源于网上的GitHub社区,有微博10 万多条,都带有情感标注,正负向评论约各 5 万条,用来做情感分析的数据集。

import jieba
import pandas as pd
import re
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
#from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping


data = pd.read_csv("E:/课程内容文件/大三下学期/数据挖掘与分析/课程实验/实验六/weibo_senti_100.csv")

数据预处理

(2)分词
data['data_cut'] = data['review'].apply(lambda x: jieba.lcut(x))
(3)去停用词
with open("E:/课程内容文件/大三下学期/数据挖掘与分析-王思霖/课程实验/实验六/stopword.txt", 'r', encoding='utf-8') as f:
    stop = f.readlines()
stop = [re.sub('\n', '', r) for r in stop]
data['data_after'] = data['data_cut'].apply(lambda x: [i for i in x if i not in stop and i != '\ufeff'])
(4)词云分析
num_words = [''.join(i) for i in data['data_after']]
num_words = ''.join(num_words)
num = pd.Series(jieba.lcut(num_words)).value_counts()
wc_pic = WordCloud(background_color='white', font_path=r'C:\Windows\Fonts\simhei.ttf').fit_words(num)
plt.figure(figsize=(10, 10))
plt.imshow(wc_pic)
plt.axis('off')
plt.show()

(5)词向量
# 构建词向量矩阵
w = []
for i in data['data_after']:
    w.extend(i)
# 计算词频
word_counts = pd.Series(w).value_counts()
# 创建DataFrame
num_data = pd.DataFrame(word_counts).reset_index()
# 重命名列
num_data.columns = ['word', 'count']
# 添加id列
num_data['id'] = num_data.index + 1

# 创建单词到ID的映射字典
word_to_id_dict = num_data.set_index('word')['id'].to_dict()

# 优化的转化成数字函数
def optimized_word2num(x):
    return [word_to_id_dict[i] for i in x if i in word_to_id_dict]

# 应用优化后的函数
data['vec'] = data['data_after'].apply(optimized_word2num)
(6)划分数据集
import tensorflow as tf
# from keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences

maxlen = 128
vec_data = pad_sequences(data['vec'], maxlen=maxlen)
x_train, x_test, y_train, y_test = train_test_split(vec_data, data['label'], test_size=0.2, random_state=0)

模型搭建

(7)模型定义
model = Sequential([
    Embedding(len(num_data) + 1,  # 词汇表大小中收录单词数量,加1是因为要包括未知词
              64,  # 每个单词的维度
              input_length=maxlen),
    LSTM(64, dropout=0.2, recurrent_dropout=0.2),
    Dense(1, activation='sigmoid')
])
(8)编译模型
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

模型训练

(9)训练
history = model.fit(x_train, y_train,
                    epochs=5,
                    validation_split=0.2,
                    verbose=1)
(10)获取训练历史数据中的各指标值
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
(11)绘制指标在训练过程中的变化图
# 绘制训练 & 验证的准确率
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
# 绘制训练 & 验证的损失值
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
(12)模型评估

使用测试集对模型进行评估

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1935202.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows 11 PC查询连接过的wlan密码

1:管理员打开cmd 2:输入netsh wlan show profiles 3:netsh wlan show profiles Shw2024-5G keyclear 密码关键内容:12345678

[深度学习]基于yolov10+streamlit目标检测演示系统设计

YOLOv10结合Streamlit构建的目标检测系统,不仅极大地增强了实时目标识别的能力,还通过其直观的用户界面实现了对图片、视频乃至摄像头输入的无缝支持。该系统利用YOLOv10的高效检测算法,能够快速准确地识别图像中的多个对象,并标注…

基于语音识别的会议记录系统

文章目录 核心功能页面展示使用技术方案功能结构设计数据库表展示 核心功能页面展示 视频展示功能 1.创建会议 在开始会议之前需要管理员先创建一个会议,为了能够快速开始会议,仅需填写会议的名称、会议举办小组、会议背景等简要会议信息即可成功创建。…

【Android studio环境搭建】Android studio连接夜神模拟器

Android studio连接夜神模拟器 一、 步骤 1.下载好Android Studio和夜神模拟器, 2.打开夜神模拟器,找到其安装目录下的 nox_adb.exe文件 3.右键进入cmd命令打开,管理员权限执行下面命令 PS D:\Program Files\Nox\bin> .\nox_adb.exe connect 127.…

EXSI 实用指南 2024 - Windows 安装篇(三)

1.引言 在上一篇《EXSI 实用指南 2024 - Ubuntu 安装篇(二)》中,我们详细介绍了在EXSI平台上安装Ubuntu操作系统的步骤和注意事项。通过该指南,您应该已经掌握了在虚拟化环境中部署Linux操作系统的基本技能。而在本篇《EXSI 实用…

win10 查看 jks 的公钥

1.使用 keytool 导出jks文件的 crt 文件 先查询别名 keytool -list -keystore oauth2.jks -storepass [你的密钥库密码] 导出crt 文件 keytool -exportcert -alias oauth2 -keystore oauth2.jks -file 777.crt 2.查看公钥 打开PowerShell # 设置.crt文件的路径 $ce…

【TortoiseGitPlink提示输入密码解决方法】

问题:TortoiseGitPlink提示输入密码 解决方案 参考链接:TortoiseGitPlink提示输入密码解决方法 但后半部分和上文不同,点击图中 Load Putty Key 即可。

组队学习——支持向量机

本次学习支持向量机部分数据如下所示 IDmasswidthheightcolor_scorefruit_namekind 其中ID:1-59是对应训练集和验证集的数据,60-67是对应测试集的数据,其中水果类别一共有四类包括apple、lemon、orange、mandarin。要求根据1-59的数据集的自…

基于深度残差网络迁移学习的浸润性导管癌检测

1. 引言 癌症是一种异常细胞不受控制地分裂损害健康组织的疾病。皮肤或覆盖我们内脏的组织中的癌细胞被称为癌。乳房中的大多数癌是导管癌。侵袭性导管癌(Invasive Ductal Carcinoma, IDC)始于乳管,侵犯乳房周围纤维组织,晚期可通过血液扩散至淋巴结或身…

PublicCMS:企业级的Java CMS系统

PublicCMS:企业级的Java CMS系统 在当今互联网飞速发展的时代,PublicCMS作为一款功能强大的开源Java CMS系统,为用户提供了全面的建站解决方案。本文将介绍PublicCMS的基本信息、特点以及如何快速部署和使用。 软件简介 PublicCMS是一款现代…

进程空间的回收以及执行当前进程空间内的另一进程

1.进程的退出 1.exit 功能: 让进程退出,并刷新缓存区 参数: status:进程退出的状态 返回值: 缺省 exit -> 刷新缓存区 -> atexit注册的退出函数 -> _exit 2._exit 功能: 让进程退出,不刷…

【驱动程序】霍尔编码器电机_CubeMX_HAL库

【驱动程序】霍尔编码器电机_CubeMX_HAL库 电机型号:MG310 霍尔编码器电机 驱动模块:L298N 接线 注: L298N 12V接线柱位置可以接50V~5V当跳线帽接入时,5V接线柱为5V输出,可以给驱动板供电当跳线帽拔出时&#xff0…

OpenAI开打价格战 GPT-4o最新变种价格骤降96%-97%

当地时间周四早晨,美国人工智能初创公司OpenAI宣布,正式上架价格显著下降的新一代入门级别人工智能“小模型”GPT-4o mini。OpenAI在今年5月发布公司迄今为止速度最快、综合能力最强,同样也是最贵的GPT-4o模型。最新上架的GPT-4o mini则是一个…

0718,TCP协议,三次握手,四次挥手

目录 上课喵: TCP(Transmission Control Protocol,传输控制协议)的状态迁移图 TCP连接的状态迁移图 状态迁移说明: 注意: big_htonl.c 字节序转换 addr.c IP地址的转换 作业喵: …

Hugging Face开源力作:探索五款顶尖LLM,GPT之外的选择

之前,我们分享了国内一些开源的大型语言模型(LLM)。今天,我想向大家介绍在Hugging Face平台上发现的一些国际上备受关注、被誉为超越GPT的LLM。对于熟悉LLM的朋友们而言,你们一定知道这些模型的强大之处:它…

流量卡什么时候激活比较适合,这个问题你考虑过吗?

在办理流量卡时,很多朋友不知道什么时候激活比较划算,在这里文章里,小编给大家简单的说一下,可供参考。 ​ 1、大家要知道,在使用流量卡时,流量卡的激活时间就是号卡的入网时间,也是计费的开始。…

【Vue】`v-bind` 指令详解:动态绑定属性的强大工具

文章目录 一、v-bind 指令概述二、v-bind 的基本用法1. 动态绑定 HTML 属性2. 动态绑定布尔属性3. 动态绑定对象属性 三、v-bind 指令的高级用法1. 动态绑定 CSS 类字符串绑定对象绑定数组绑定 2. 动态绑定内联样式对象绑定数组绑定 四、v-bind 的简写形式1. 绑定单个属性2. 绑…

初学SpringMVC之文件上传和下载

pom.xml 文件导入 commons-fileupload 的 jar 包 <!-- 文件上传 --><dependency><groupId>commons-fileupload</groupId><artifactId>commons-fileupload</artifactId><version>1.5</version></dependency><dependen…

无线物联网新时代,RFID拣货标签跟随潮流

拣选技术的演变历程&#xff0c;本质上是从人力操作向自动化、智能化转型的持续进程。近期&#xff0c;“货寻人”技术成为众多企业热烈追捧的对象&#xff0c;它可以根据企业的特定需求&#xff0c;从众多拣选方案中选出最优解。那么&#xff0c;在采用“货到人”拣选技术时&a…

全国媒体邀约,主流媒体到场出席采访报道

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 全国媒体邀约&#xff0c;确保主流媒体到场出席采访报道&#xff0c;可以带来一系列的好处&#xff0c;这些好处不仅能够增强活动的可见度&#xff0c;还能对品牌或组织的长期形象产生积…