目录
AVL树节点的定义
AVL树的插入
AVL树的旋转
1. 新节点插入较高左子树的左侧---左左:右单旋
2.新节点插入较高右子树的右侧---右右:左单旋
3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
AVL树的验证
AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
性质:
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O(log2 n)--以2为底n的对数,搜索时间复杂度O(log2 n)。
AVL树节点的定义
template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left; // 该节点的左孩子
AVLTreeNode<K, V>* _right; // 该节点的右孩子
AVLTreeNode<K, V>* _parent; // 该节点的双亲
pair<K, V> _kv;int _bf; //balance factor 右子树高度-左子树高度
AVLTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _bf(0)
, _kv(kv)
{}
};
AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
更新平衡因子的五种情况:
1.cur==parent->left parent->bf--
2.cur==parent->right parent->bf++
3.更新以后,parent->bf==0,更新结束。(说明更新前parent->bf是 1 或者 -1,现在变成0,矮的那一边被填上了,parent所在子树高度不变)
4.更新以后,parent->bf==1/-1,继续向上更新。(说明更新前parent->bf是0,现在变成 1 或者 -1,有一边子树变高了,parent所在子树高度改变,需要继续向上更新)
5.更新以后,parent->bf==2/-2,parent所在子树已经不平衡,需要旋转处理。
bool Insert(const pair<K,V>& kv)
{
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入节点
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//控制平衡
while (parent)
{
// 更新双亲的平衡因子
if (cur == parent->_left)
parent->_bf--;
else
parent->_bf++;
// 更新后检测双亲的平衡因子
if (parent->_bf == 0)
{
break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树的高度增加了一层,因此需要继续向上调整
cur = parent;
parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以parent为根的树进行旋转处理
if (parent->_bf == -2 || cur->_bf == -1)//右单旋
{
RotateR(parent);
}
else if (parent->_bf == 2 || cur->_bf == 1)//左单旋
{
RotateL(parent);
}
else if (parent->_bf == -2 || cur->_bf == 1)
{
RotateLR(parent);
}
else if (parent->_bf == 2 || cur->_bf == -1)
{
RotateRL(parent);
}
break;
}
else
{
//插入更新平衡因子之前,树中平衡因子就有问题了
assert(false);
}
}
return true;
}
AVL树的旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构, 使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
1. 新节点插入较高左子树的左侧---左左:右单旋
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层, 即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
1. 30节点的右孩子可能存在,也可能不存在 。
2. 60可能是根节点,也可能是子树。如果是根节点,旋转完成后,要更新根节点;如果是子树,可能是某个节点的左子树,也可能是右子树 。
图解:
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
// 如果左孩子的右孩子存在,更新双亲
if (subLR)
subLR->_parent = parent;
因为更新的可能是棵子树,因此在更新其双亲前必须先保存该节点的双亲
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
//如果旋转的是根节点,更新指向根节点的指针
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
// 如果更新的是子树,可能是其双亲的左子树,也可能是右子树
if (parentParent->_left == parent)
parentParent->_left = subL;
else
parentParent->_right = subL;
subL->_parent = parentParent;
}
subL->_bf = parent->_bf = 0;
}
2.新节点插入较高右子树的右侧---右右:左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parentParent->_left == parent)
parentParent->_left = subR;
else
parentParent->_right = subR;
subR->_parent = parentParent;
}
subR->_bf = parent->_bf = 0;
}
3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再 考虑平衡因子的更新。
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子
int bf = pSubLR->_bf;
// 先对30进行左单旋
_RotateL(pParent->_pLeft);
// 再对90进行右单旋
_RotateR(pParent);
if(1 == bf)
pSubL->_bf = -1;
else if(-1 == bf)
pParent->_bf = 1;
}
4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑:
1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为pSubR 当pSubR的平衡因子为1时,执行左单旋 当pSubR的平衡因子为-1时,执行右左双旋
2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为pSubL 当pSubL的平衡因子为-1是,执行右单旋 当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->right);
RotateL(parent);
if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
else if (bf == 0)
{
parent->_bf = 0;
subR->_bf = 0;
subRL->_bf = 0;
}
else
{
assert(false);
}
}
AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1. 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2. 验证其为平衡树
- 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
- 节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
// 空树也是AVL树
if (nullptr == pRoot)
return true;
// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(pRoot->_pLeft);
int rightHeight = _Height(pRoot->_pRight);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
// pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (diff != pRoot->_bf || (diff > 1 || diff < -1))
return false;
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
}
AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即log2 (N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。