文章目录
- 一、关于 TRL
- 亮点
- 二、安装
- 1、Python包
- 2、从源码安装
- 3、存储库
- 三、命令行界面(CLI)
- 四、如何使用
- 1、`SFTTrainer`
- 2、`RewardTrainer`
- 3、`PPOTrainer`
- 4、`DPOTrainer`
- 五、其它
- 开发 & 贡献
- 参考文献
- 最近策略优化 PPO
- 直接偏好优化 DPO
一、关于 TRL
TRL : Transformer Reinforcement Learning
Full stack library to fine-tune and align large language models.
Train transformer language models with reinforcement learning.
- github : https://github.com/huggingface/trl
- 文档:https://huggingface.co/docs/trl/index
该trl
库是一个全栈工具,用于使用监督微调步骤(SFT)、奖励建模(RM)和近似策略优化(PPO)以及直接偏好优化(DPO)等方法微调和对齐转换器语言和扩散模型。
该库建立在transformers
库之上,因此允许使用那里可用的任何模型架构。
亮点
Efficient and scalable
accelerate
是trl
的支柱,它允许使用DDP和DeepSpeed等方法将模型训练从单个GPU扩展到大规模多节点集群。PEFT
是完全集成的,即使是最大的模型也可以通过量化和LoRA或QLoRA等方法在适度的硬件上训练。unsloth
也是集成的,允许使用专用内核显着加快训练速度。
CLI
:使用CLI,您可以使用单个命令和灵活的配置系统微调LLM并与之聊天,而无需编写任何代码。Trainers
:培训师类是一个抽象,可以轻松应用许多微调方法,如SFTTrainer
、DPOTrainer
、RewardTrainer
、PPOTrainer
、CPOTrainer
和ORPOTrainer
。AutoModels
:AutoModelForCausalLMWithValueHead
&AutoModelForSeq2SeqLMWithValueHead
类为模型添加了一个额外的值头,允许使用RL算法(如PPO)训练它们。Examples
:使用BERT情感分类器训练GPT2以生成积极的电影评论,仅使用适配器的完整RLHF,训练GPT-j毒性更小,StackLlama示例等。以下是示例。
二、安装
1、Python包
使用pip
安装库:
pip install trl
2、从源码安装
如果您想在正式发布之前使用最新功能,您可以从源代码安装:
pip install git+https://github.com/huggingface/trl.git
3、存储库
如果您想使用这些示例,您可以使用以下命令克隆存储库:
git clone https://github.com/huggingface/trl.git
三、命令行界面(CLI)
您可以使用TRL命令行界面(CLI)快速开始使用监督微调(SFT)、直接偏好优化(DPO)并使用聊天CLI测试对齐的模型:
SFT:
trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb
DPO:
trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-helpful-base-trl-style --output_dir opt-sft-hh-rlhf
聊天:
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
在 relevant documentation section 阅读有关CLI的更多信息,或使用--help
获取更多详细信息。
四、如何使用
为了获得更多的灵活性和对训练的控制,您可以使用专用的训练类 来微调Python中的模型。
1、SFTTrainer
这是如何使用库中的SFTTrainer
的基本示例。
SFTTrainer
是围绕transformers
Trainer的轻型包装器,可轻松微调自定义数据集上的语言模型或适配器。
# imports
from datasets import load_dataset
from trl import SFTTrainer
# get dataset
dataset = load_dataset("imdb", split="train")
# get trainer
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=512,
)
# train
trainer.train()
2、RewardTrainer
这是如何使用库中的RewardTrainer
的基本示例。
RewardTrainer
是 transformers
Trainer 的包装器,可轻松微调自定义偏好数据集上的奖励模型或适配器。
# imports
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from trl import RewardTrainer
# load model and dataset - dataset needs to be in a specific format
model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
...
# load trainer
trainer = RewardTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)
# train
trainer.train()
3、PPOTrainer
这是如何使用库中的PPOTrainer
的基本示例。
基于查询,语言模型创建一个响应,然后对其进行评估。评估可以是循环中的人或另一个模型的输出。
# imports
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from trl.core import respond_to_batch
# get models
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
ref_model = create_reference_model(model)
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# initialize trainer
ppo_config = PPOConfig(batch_size=1, mini_batch_size=1)
# encode a query
query_txt = "This morning I went to the "
query_tensor = tokenizer.encode(query_txt, return_tensors="pt")
# get model response
response_tensor = respond_to_batch(model, query_tensor)
# create a ppo trainer
ppo_trainer = PPOTrainer(ppo_config, model, ref_model, tokenizer)
# define a reward for response
# (this could be any reward such as human feedback or output from another model)
reward = [torch.tensor(1.0)]
# train model for one step with ppo
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
4、DPOTrainer
DPOTrainer
是使用直接偏好优化算法的培训师,这是如何使用库中的DPOTrainer
的基本示例DPOTrainer
是transformers
Trainer的包装器,可轻松微调自定义偏好数据集上的奖励模型或适配器。
# imports
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer
# load model and dataset - dataset needs to be in a specific format
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
...
# load trainer
trainer = DPOTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)
# train
trainer.train()
五、其它
开发 & 贡献
如果您想为trl
做出贡献或根据您的需求对其进行定制,请务必阅读贡献指南并确保您进行了开发安装:
git clone https://github.com/huggingface/trl.git
cd trl/
make dev
参考文献
最近策略优化 PPO
PPO实现在很大程度上遵循D. Ziegler等人的**“来自人类偏好的微调语言模型”**论文中介绍的结构。[论文,代码]。
直接偏好优化 DPO
DPO基于E. Mitchell等人的**《直接偏好优化:您的语言模型是秘密的奖励模型》**的原始实现。[论文,代码]
2024-07-17(三)