R语言实现神经网络ANN

news2024/11/24 0:47:21
# 常用激活函数
# 自定义Sigmoid函数
sigmod <- function(x){
    return(1/(1+exp(-x)))
}
# 绘制Sigmoid曲线
x <- seq(-10,10,length.out = 100)
plot(x,sigmod(x),type = 'l',col = 'blue',lwd = 2,
     xlab = NA,ylab = NA,main = 'Sigmoid函数曲线')

# 自定义Tanh函数
tanh <- function(x){
    return((exp(x)-exp(-x))/(exp(x)+exp(-x)))
}
# 绘制Tanh曲线
x <- seq(-10,10,length.out = 100)
plot(x,tanh(x),type = 'l',col = 'blue',lwd = 2,
     xlab = NA,ylab = NA,main = 'Tanh函数曲线')

# 自定义ReLU函数
relu <- function(x){
    return(ifelse(x<0,0,x))
}
# 绘制ReLu曲线
x <- seq(-6,6,length.out = 100)
plot(x,relu(x),type = 'l',col = 'blue',lwd = 2,
     xlab = NA,ylab = NA,main = 'ReLU函数曲线')
grid()


###  11.3	案例-对iris进行类别预测  ###
# 数据分区
# install.packages("caret")
set.seed(1234) # 设置随机种子
library(caret)
ind <- createDataPartition(iris$Species,p = 0.5,list = FALSE) 
train <- iris[ind,] # 训练集
test <- iris[-ind,] # 测试集

##  1.	利用nnet包神经网络模型 ##
# 训练神经网络模型
set.seed(1234)
library(nnet)
iris.nnet <- nnet(Species ~ ., data = train,size = 2,
                  rang = 0.1,decay = 5e-4,maxit = 200)

# 调用summary()函数查看训练好的神经网络信息 
summary(iris.nnet)

# 对生成的神经网络进行可视化
#install.packages('reshape')
library(reshape)
source('nnet_plot_update.r')
plot.nnet(iris.nnet)

iris.nnet$wts # 查看各节点的连接权重值
iris.nnet$value # 查看迭代结束时的损失函数值
head(iris.nnet$fitted.values) # 查看训练集各观测点的预测概率

# 对test进行预测
iris_nnet_pred <- predict(iris.nnet,newdata = test,type = 'class') 
(iris_nnet_pred_table  <- table('actual' = test$Species,
                                'prediction' = iris_nnet_pred)) # 查看混淆矩阵
sum(diag(iris_nnet_pred_table)) / sum(iris_nnet_pred_table) # 查看模型准确率


##  2.利用neuralnet包神经网络模型 ##
# 对因子型的因变量进行哑变量处理
dmy1 <- dummyVars(~.,data = train,levelsOnly = TRUE)
train_dmy <- predict(dmy1,newdata = train)
test_dmy <- predict(dmy1,newdata = test)
head(train_dmy,3)
head(test_dmy,3)

# 训练神经网络模型
set.seed(1234)
library(neuralnet)
iris_neuralnet <- neuralnet(setosa + versicolor + virginica ~ 
                                Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
                            data = train_dmy,hidden = 3) # 构建模型

iris_neuralnet$result.matrix # 输出结果矩阵

plot(iris_neuralnet) # 模型可视化

# 对test进行预测,生成相关的预测概率矩阵
iris_neuralnet_predict <- compute(iris_neuralnet,test_dmy[,1:4])$net.result 
head(iris_neuralnet_predict,3)

# 得到可能的类别
iris_neuralnet_pred <- unique(test$Species)[apply(iris_neuralnet_predict,1,which.max)]
head(iris_neuralnet_pred,3)

(iris_neuralnet_pred_table  <- table('actual' = test$Species,
                                     'prediction' = iris_neuralnet_pred)) # 查看混淆矩阵
sum(diag(iris_neuralnet_pred_table)) / sum(iris_neuralnet_pred_table) # 查看模型准确率

##  3.利用AMORE包训练神经网络模型 ##
# 指定lib包路径
.libPaths()
.libPaths("C:/Users/VICTUS/AppData/Local/R/win-library/4.4")

# 回归问题的神经网络模型
iris1 <- iris[,1:4]
# 对前三列进行标准化
iris1[,1:3] <- apply(iris1[,1:3],2,scale)
# 加载AMORE包
#install.packages("AMORE",type="binary")
library(AMORE)
# 建立神经网络模型,输入层有3个神经元,输出层有一个神经元,这里增加了两个隐藏层,分别具有10,5个神经元。
newNet <- newff(n.neurons = c(3,10,5,1),
                learning.rate.global=1e-4,
                momentum.global=0.05,
                error.criterium="LMS", 
                Stao=NA, 
                hidden.layer="sigmoid", 
                output.layer="purelin", 
                method="ADAPTgdwm")
# 使用train函数,基于训练数据对神经网络进行训练
newNet.train <- train(newNet,iris1[,1:3],iris1[,4],
                      report = TRUE,show.step = 100,n.shows = 10)
# 基于训练好的模型,对iris1进行预测,并计算均方误差
pred <- sim(newNet.train$net,iris1[,1:3])
error <- sqrt(sum(pred-iris1$Petal.Width)^2)
error

##  4.利用RSNNS包训练神经网络模型 ##
library(Rcpp)
library(RSNNS)
set.seed(12)
# 准备数据
# 将因变量进行哑变量处理
library(caret)
dmy <- dummyVars(~.,data = iris,levelsOnly = TRUE)
iris1 <- predict(dmy,newdata = iris)
# 将自变量进行标准化处理
iris1[,1:4] <- apply(iris[,1:4],2,scale)
# 将数据进行分区
ind <- createDataPartition(iris$Species,p = 0.8,list = FALSE) 
train <- iris1[ind,] # 训练集
test <- iris1[-ind,] # 测试集
# 使用mlp()函数,建立具有两个隐藏层,分别具有神经元数量为8,4的多层感知器网络
mlp.nnet <- mlp(train[,1:4],train[,5:7],size = c(8,4), learnFunc="Quickprop", 
                learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100)
#利用上面建立的模型进行预测, 得到预测概率矩阵
pred_prob = predict(mlp.nnet,test[,1:4])
head(pred_prob,3)
# 然后,通过找到概率最大的那一列,得到其他可能的类别
pred_class <- unique(iris[-ind,]$Species)[apply(pred_prob,1,which.max)]
#生成混淆矩阵,观察预测精度 
table('actual' = iris[-ind,]$Species,
      'prediction'= pred_class)
sum(diag(table('actual' = iris[-ind,]$Species,
              'prediction'= pred_class))) / nrow(test)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1930901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MYSQL——数据库基础和操作

1.创建数据库 CREATE DATABASE [IF NOT EXISTS] db_name [create_specification [, create_specification] …] create_specification: [DEFAULT] CHARACTER SET charset_name [DEFAULT] COLLATE collation_name 说明&#xff1a; 1.大写的表示关键字 2. []是可选项 3. CHARACT…

读人工智能全传15意向立场

1. 物理立场 1.1. 可以解释一个实体行为 1.2. 在物理立场中&#xff0c;我们使用自然法则(物理、化学等)来预测系统的行为结果 1.3. 虽然物理立场在解释这种行为的时候非常有效&#xff0c;但无法应用于理解或者预测人类行为 1.3.1. …

RocketMQ源码学习笔记:消费者启动流程

这是本人学习的总结&#xff0c;主要学习资料如下 马士兵教育rocketMq官方文档 目录 1、前置知识1.1、pull和push型消费者1.2、消息CommitLog到ConsumeQueue1.3、自动创建的重试主题1.4、广播型消费和集群型消费中offset的存储位置 2、消费中的启动流程2.1、Preview2.2、校验&…

主流大数据调度工具DolphinScheduler之数据ETL流程

今天给大家分享主流大数据调度工具DolphinScheduler&#xff0c;以及数据的ETL流程。 一&#xff1a;调度工具DS 主流大数据调度工具DolphinScheduler&#xff0c; 其定位&#xff1a;解决数据处理流程中错综复杂的依赖关系 任务支持类型&#xff1a;支持传统的shell任务&a…

MBR40150FCT-ASEMI无人机专用MBR40150FCT

编辑&#xff1a;ll MBR40150FCT-ASEMI无人机专用MBR40150FCT 型号&#xff1a;MBR40150FCT 品牌&#xff1a;ASEMI 封装&#xff1a;TO-220F 批号&#xff1a;最新 最大平均正向电流&#xff08;IF&#xff09;&#xff1a;40A 最大循环峰值反向电压&#xff08;VRRM&a…

shell脚本——编程规范与变量

目录 一、shell脚本 1、shell脚本概述 2、shell脚本的应用场景 3、shell脚本的作用——命令解释器 二、Shell 脚本编程规范 1、用户登录Shell 2、shell脚本的构成 3、执行shell脚本 三、重定向与管道操作 1、重定向 1.1、交互式硬件设备 1.2、重定向操作 2、重定向…

php相关

php相关 ​ 借鉴了小迪安全以及各位大佬的博客&#xff0c;如果一切顺利&#xff0c;会不定期更新。 如果感觉不妥&#xff0c;可以私信删除。 默认有php基础。 文章目录 php相关1. php 缺陷函数1. 与2. MD53. intval()4. preg_match() 2. php特性1. php字符串解析特性2. 杂…

数据结构-C语言-排序(3)

代码位置&#xff1a;test-c-2024: 对C语言习题代码的练习 (gitee.com) 一、前言&#xff1a; 1.1-排序定义&#xff1a; 排序就是将一组杂乱无章的数据按照一定的规律&#xff08;升序或降序&#xff09;组织起来。(注&#xff1a;我们这里的排序采用的都为升序) 1.2-排序分…

从汇编层看64位程序运行——栈保护

大纲 栈保护延伸阅读参考资料 在《从汇编层看64位程序运行——ROP攻击以控制程序执行流程》中&#xff0c;我们看到可以通过“微操”栈空间控制程序执行流程。现实中&#xff0c;黑客一般会利用栈溢出改写Next RIP地址&#xff0c;这就会修改连续的栈空间。而编译器针对这种场景…

集合媒体管理、分类、搜索于一体的开源利器:Stash

Stash&#xff1a;强大的媒体管理工具&#xff0c;让您的影音生活井井有条- 精选真开源&#xff0c;释放新价值。 概览 Stash是一个专为个人媒体管理而设计的开源工具&#xff0c;基于 Go 编写&#xff0c;支持自部署。它以用户友好的界面和强大的功能&#xff0c;满足了现代用…

16_网络IPC2-寻址

进程标识 字节序 采用大小模式对数据进行存放的主要区别在于在存放的字节顺序&#xff0c;大端方式将高位存放在低地址&#xff0c;小端方式将高位存放在高地址。 采用大端方式进行数据存放符合人类的正常思维&#xff0c;而采用小端方式进行数据存放利于计算机处理。到目前…

IDEA快速生成项目树形结构图

下图用的IDEA工具&#xff0c;但我觉得WebStorm 应该也可以 文章目录 进入项目根目录下&#xff0c;进入cmd输入如下指令&#xff1a; 只有文件夹 tree . > list.txt 包括文件夹和文件 tree /f . > list.txt 还可以为相关包路径加上注释

系统架构师考点--软件工程(下)

大家好。今天继续总结软件工程的知识点。 一、处理流程设计 业务流程重组BPR BPR是对企业的业务流程进行根本性的再思考和彻底性的再设计&#xff0c;从而获得可以用诸如成本、质量、服务和速度等方面的业绩来衡量的显著性的成就。BPR设计原则、系统规划和步骤如下图所示&am…

从 Pandas 到 Polars 十八:数据科学 2025,对未来几年内数据科学领域发展的预测或展望

我在2021年底开始使用Polars和DuckDB。我立刻意识到这些库很快就会成为数据科学生态系统的核心。自那时起&#xff0c;这些库的受欢迎程度呈指数级增长。 在这篇文章中&#xff0c;我做出了一些关于未来几年数据科学领域的发展方向和原因的预测。 这篇文章旨在检验我的预测能力…

日志的编写与线程池的结合

目录 一、认识日志 二、时间的等级划分 三、日志的输出端 3.1 保存至文件 四、日志的部分信息 4.1 日志等级 4.2 日志时间 五、加载日志 六、日志的宏编写 七、ThreadPool Log 一、认识日志 记录事件&#xff1a; 日志用于记录系统运行过程中发生的各种事件&…

word 设置多级混合标题自动更新

目录预览 一、问题描述二、原因分析三、解决方案四、参考链接 一、问题描述 有没有体会过多级标题&#xff0c;怎么设置都不听使唤的情况&#xff1f; 我想要的格式是&#xff1a; 二、原因分析 多级标题中发现&#xff0c;输入编号格式这里有个数字没有底纹,是了&#xff0…

解析 Mira :基于 Web3,让先进的 AI 技术易于访问和使用

“Mira 平台正在以 Web3 的方式解决当前 AI 开发面临的复杂性问题&#xff0c;同时保护 AI 贡献者的权益&#xff0c;让他们可以自主拥有并货币化自己的模型、数据和应用&#xff0c;以使先进的 AI 技术更加易于访问和使用。” AI 代表着一种先进的生产力&#xff0c;它通过深…

nginx代理缓存

在服务器架构中&#xff0c;反向代理服务器除了能够起到反向代理的作用之外&#xff0c;还可以缓存一些资源&#xff0c;加速客户端访问&#xff0c;nginx的ngx_http_proxy_module模块不仅包含了反向代理的功能还包含了缓存功能。 1、定义代理缓存规则 参数详解&#xff1a; p…

万字长文之分库分表里如何优化分页查询?【后端面试题 | 中间件 | 数据库 | MySQL | 分库分表 | 分页查询】

分库分表的一般做法 一般会使用三种算法&#xff1a; 哈希分库分表&#xff1a;根据分库分表键算出一个哈希值&#xff0c;根据这个哈希值选择一个数据库。最常见的就是数字类型的字段作为分库分表键&#xff0c;然后取余。比如在订单表里&#xff0c;可以按照买家的ID除以8的…

开发实战经验分享:互联网医院系统源码与在线问诊APP搭建

作为一名软件开发者&#xff0c;笔者有幸参与了多个互联网医院系统的开发项目&#xff0c;并在此过程中积累了丰富的实战经验。本文将结合我的开发经验&#xff0c;分享互联网医院系统源码的设计与在线问诊APP的搭建过程。 一、需求分析 在开发任何系统之前&#xff0c;首先要…