从 Pandas 到 Polars 十八:数据科学 2025,对未来几年内数据科学领域发展的预测或展望

news2024/11/24 2:50:46

我在2021年底开始使用Polars和DuckDB。我立刻意识到这些库很快就会成为数据科学生态系统的核心。自那时起,这些库的受欢迎程度呈指数级增长。

在这篇文章中,我做出了一些关于未来几年数据科学领域的发展方向和原因的预测。

这篇文章旨在检验我的预测能力。但我也写这篇文章是为了引发关于关键趋势的讨论,并帮助数据科学家思考他们在未来几年应该发展的技能。

注意事项

  1. 这篇文章是从一个传统上以Pandas进行探索性数据分析,然后将分析结果以无服务器函数形式进行生产化的工作者的角度出发。生产阶段可能涉及机器学习模型,但也可能是一组定义好的规则和正则表达式。
  2. 我的经验也包括作为研究科学家在集群上运行大规模分析,而不涉及任何无服务器生产阶段。

预测一:Polars 和 DuckDB 将取代 Pandas 作为表格数据的核心工具

随着性能上相比 Pandas 的巨大飞跃,Polars 和 DuckDB 将成为 Python 中数据分析的标准工具。这一转变已经从那些感受到最大性能压力的用户开始,但随着它们周围生态系统的发展,它们将成为标准。

然而,这些工具的优势并不仅仅在于它们计算速度有多快。Polars 的表达式语法比 Pandas 中相应的语法更适合描述数据转换。这两个库都应用了自动查询优化,避免了 Pandas 代码越来越繁琐的手动优化。它们还都处理了并行化和大于内存的数据,而无需其他无数依赖项。

我认为 Polars 和 DuckDB 将成为双寡头,而不是其中之一取代 Pandas 成为垄断者。尽管这两个库的功能有很多重叠,但有些人会想要一个像 DuckDB 这样的工具,它拥有更多关系型数据库的陷阱,而有些人则不会。

预测二:Arrow 将成为数据科学生态系统的核心技术

Apache Arrow 是一种用于表示内存中数据的格式。Arrow 的设计是语言无关的,并且许多语言中都出现了实现这种格式的库。

Polars 是直接基于名为 Arrow2 的 Rust Arrow 库构建的。DuckDB 并不是基于 Arrow 构建的,但它可以从 Arrow 数据中进行零拷贝读取。

Arrow 将取代 Numpy 数组在数据科学生态系统中表格数据的核心地位。这意味着可视化、机器学习和其他库将接受 Arrow 对象作为输入。由于 Arrow 允许零拷贝数据交换,这些库将能够直接从数据框中直接摄取数据,而无需像现在这样进行大量浪费性的数据复制。

随着 Arrow 使得进程间通信更加容易,我们还将看到数据科学工具的融合,例如在 Python 脚本中拟合 R 模型。

在这方面,变革的步伐比 Polars 和 DuckDB 的采用要慢一些。然而,变革的步伐正在加快。例如,XGBoost 模型现在接受 Arrow 表作为输入,而 Huggingface 的 Datasets 库则使用 Arrow 作为其本地缓存系统。

预测三:Rust 化的趋势

在数据科学蓬勃发展的十年里,我所在领域的日常工作主要由像 Python 这样的动态语言或像 R 和 Julia 这样使用即时编译的语言主导。虽然像 C 和 C++ 这样的编译型语言被用于 Python 扩展或 DuckDB 的内部,但很少有数据科学家直接使用它们。

我预测 Rust 将成为数据科学家常用的第一种预编译语言(而不会取代 Python 和 R 作为主要语言)。Rust 在数据科学家中的普及将受到 Polars 的推动,用户会发现从使用 Python 切换到 Rust API 的门槛相对较低——比从 Pandas 切换到 C 的门槛要低得多!

我们还将看到更多基于 Rust 构建的库,这些库将提供 Python 和 R 的 API。特别是,我认为我们将看到一个广泛使用的、用 Rust 编写并基于 Apache Arrow 的 Scikit-Learn 替代品。

在过去的几个月里,我在 Polars 的工作中明显感受到了 Rust 的优势。相比 Python,Rust 在性能上的提升是巨大的,并且并行化得到了可靠的管理。然而,Rust 周围的现代工具系统,如用于管理依赖项的 Cargo,使得 Rust 对于 Python 开发者来说比旧语言更容易接受。我之所以决定将精力集中在 Polars 而不是 DuckDB 上,其中一个因素就是我对学习 Rust 的热情远超过学习 C++。

关于GPU

我最近将Polars描述为地球上最快的数据科学工具。然而,一位受访者正确地指出,基于GPU的库(如cuDF)更快。但是,使用GPU的额外成本很高,包括GPU本身的成本以及管理额外云实例的成本。

GPU在数据处理方面的流行度将继续增长,但在未来几年内不会成为标准方法。随着Polars和DuckDB通过内置并行化和矢量化指令更高效地利用多核CPU,只有高级用户才会觉得使用GPU的成本效益是合理的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1930883.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

日志的编写与线程池的结合

目录 一、认识日志 二、时间的等级划分 三、日志的输出端 3.1 保存至文件 四、日志的部分信息 4.1 日志等级 4.2 日志时间 五、加载日志 六、日志的宏编写 七、ThreadPool Log 一、认识日志 记录事件: 日志用于记录系统运行过程中发生的各种事件&…

word 设置多级混合标题自动更新

目录预览 一、问题描述二、原因分析三、解决方案四、参考链接 一、问题描述 有没有体会过多级标题,怎么设置都不听使唤的情况? 我想要的格式是: 二、原因分析 多级标题中发现,输入编号格式这里有个数字没有底纹,是了&#xff0…

解析 Mira :基于 Web3,让先进的 AI 技术易于访问和使用

“Mira 平台正在以 Web3 的方式解决当前 AI 开发面临的复杂性问题,同时保护 AI 贡献者的权益,让他们可以自主拥有并货币化自己的模型、数据和应用,以使先进的 AI 技术更加易于访问和使用。” AI 代表着一种先进的生产力,它通过深…

nginx代理缓存

在服务器架构中,反向代理服务器除了能够起到反向代理的作用之外,还可以缓存一些资源,加速客户端访问,nginx的ngx_http_proxy_module模块不仅包含了反向代理的功能还包含了缓存功能。 1、定义代理缓存规则 参数详解: p…

万字长文之分库分表里如何优化分页查询?【后端面试题 | 中间件 | 数据库 | MySQL | 分库分表 | 分页查询】

分库分表的一般做法 一般会使用三种算法: 哈希分库分表:根据分库分表键算出一个哈希值,根据这个哈希值选择一个数据库。最常见的就是数字类型的字段作为分库分表键,然后取余。比如在订单表里,可以按照买家的ID除以8的…

开发实战经验分享:互联网医院系统源码与在线问诊APP搭建

作为一名软件开发者,笔者有幸参与了多个互联网医院系统的开发项目,并在此过程中积累了丰富的实战经验。本文将结合我的开发经验,分享互联网医院系统源码的设计与在线问诊APP的搭建过程。 一、需求分析 在开发任何系统之前,首先要…

UPFC统一潮流控制器的simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 UPFC统一潮流控制器的simulink建模与仿真。能够在不增加输电线路物理容量的情况下,显著提高电力系统的传输能力和稳定性。UPFC能够同时控制输电线路的有功功率、无…

技术速递|Let’s Learn .NET Aspire – 开始您的云原生之旅!

作者:James Montemagno 排版:Alan Wang Let’s Learn .NET 是我们全球性的直播学习活动。在过去 3 年里,来自世界各地的开发人员与团队成员一起学习最新的 .NET 技术,并参加现场研讨会学习如何使用它!最重要的是&#…

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序,用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型,这种模型是专门为 Excel、Go…

在设计电气系统时,电气工程师需要考虑哪些关键因素?

在设计电气系统时,电气工程师需要考虑多个关键因素,以确保系统的安全性、可靠性、效率和经济性。我收集归类了一份plc学习包,对于新手而言简直不要太棒,里面包括了新手各个时期的学习方向编程教学、问题视频讲解、毕设800套和语言…

【Neural signal processing and analysis zero to hero】- 1

The basics of neural signal processing course from youtube: 传送地址 Possible preprocessing steps Signal artifacts (not) to worry about doing visual based artifact rejection so that means that before you start analyzing, you can identify those data epic…

《学会 SpringBoot · 定制 SpringMVC》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 近期刚转战 CSDN,会严格把控文章质量,绝不滥竽充数,如需交流&#xff…

Pytorch学习笔记day1—— 安装教程

这里写自定义目录标题 Pytorch安装方式 工作需要,最近开始搞一点AI的事情。但是这个国产的AI框架,实话说对初学者不太友好 https://www.mindspore.cn/ 比如说它不支持win下的CUDA,可是我手里只有3070Ti和4060也不太可能自己去买昇腾就有点绷不…

C语言 | Leetcode C语言题解之第239题滑动窗口最大值

题目&#xff1a; 题解&#xff1a; int* maxSlidingWindow(int* nums, int numsSize, int k, int* returnSize) {int prefixMax[numsSize], suffixMax[numsSize];for (int i 0; i < numsSize; i) {if (i % k 0) {prefixMax[i] nums[i];} else {prefixMax[i] fmax(pref…

C++深度解析教程笔记9-静态成员变量,静态成员函数,二阶构造,友元,函数重载,操作符重载

C深度解析教程笔记9 第25课 - 类的静态成员变量实验-数对象个数&#xff08;失败&#xff09;实验-静态变量小结 第26课 - 类的静态成员函数实验-修改对象的静态变量数值实验-利用静态成员函数实验-静态变量静态函数实现统计对象个数小结 第27课 - 二阶构造模式实验-初始化是否…

【JavaEE】HTTP(2)

&#x1f921;&#x1f921;&#x1f921;个人主页&#x1f921;&#x1f921;&#x1f921; &#x1f921;&#x1f921;&#x1f921;JavaEE专栏&#x1f921;&#x1f921;&#x1f921; &#x1f921;&#x1f921;&#x1f921;下一篇文章&#xff1a;【JavaEE】HTTP协议(…

C++——类和对象(下)

文章目录 一、再探构造函数——初始化列表二、 类型转换三、static成员静态成员变量静态成员函数 四、 友元友元函数友元类 五、内部类六、匿名对象 一、再探构造函数——初始化列表 之前我们实现构造函数时&#xff0c;初始化成员变量主要使⽤函数体内赋值&#xff0c;构造函…

【读点论文】ASAM: Boosting Segment Anything Model with Adversarial Tuning,对抗学习提升性能

ASAM: Boosting Segment Anything Model with Adversarial Tuning Abstract 在不断发展的计算机视觉领域&#xff0c;基础模型已成为关键工具&#xff0c;对各种任务表现出卓越的适应性。其中&#xff0c;Meta AI 的 Segment Anything Model (SAM) 在图像分割方面表现突出。然…

第十一届MathorCup高校数学建模挑战赛-C题:海底数据中心的散热优化设计(续)(附MATLAB代码实现)

目录 5.3 问题三的求解 5.3.1 数据分析 5.3.2 数据处理 5.3.4 得出结论 5.4 问题四的求解 5.4.1 数据分析 5.4.2 算法分析 5.5 问题五的求解 六、模型评价与推广 6.1 模型的优点 6.2 模型的缺点 6.3 模型的推广 七、参考文献 代码实现 8.1 图 4 的代码 8.2 图 5 的代码 8.3 图…

旗晟巡检机器人的应用场景有哪些?

巡检机器人作为现代科技的杰出成果&#xff0c;已广泛应用于各个关键场景。从危险的工业现场到至关重要的基础设施&#xff0c;它们的身影无处不在。它们以精准、高效、不知疲倦的特性&#xff0c;担当起保障生产、守护安全的重任&#xff0c;为行业发展注入新的活力。那么&…