昇思25天学习打卡营第16天|Vision Transformer图像分类

news2024/11/15 4:42:45

本节使用Vision Transfomer完成图像分类

相关知识

Vision Transformer

ViT是计算机视觉和自然语言处理两个领域的融合成果。它使用transformer架构来处理图像数据,这种架构原本是用于处理自然语言的。
ViT的主要思想是将图像分割成固定大小的块(patches),再将块转换成序列形式(自然语言中就是词语序列)。ViT就是利用transformer的编码器来处理这些序列的。
此外ViT引入了visual token视觉标记的概念,它通过在输入的图像块中添加一些特定的位置编码信息,使模型可以处理不同位置和内容的图像信息。

ViT模型的特点包括

  1. 将图像划分成多个patch,再将二维的patch转换为一维向量,加上类别向量与位置向量作为模型输入。
  2. 模型主体block是基于transformer的encoder结构(调整了normalization的位置),核心组件依然是Multi head attention。
  3. transformer encoder部分称为backbone,最后的全连接层称为head。

transformer基本原理

这里着重介绍一下编解码器结构。encoder与decoder由许多结构组成,如:多头注意力层、feed forward层、normalization层、残差连接residual connection。其中,最重要的是多头注意力,该结构基于自注意力机制,是多个self attention的并行组成。

attention

self attention的核心内容是为输入向量的每个单词学习一个权重。通过给定一个任务相关的查询Query向量,计算Query和各个key的相似性或相关性得到注意力分布,得到每个key对应value的权重系数,再对value加权求和得到最终的attention数值。

输入向量通过embedding层映射成并行的Q、K、V三个向量。再使用QK做点积得到注意力权重,再将该权重对value加权求和,得到最终的输出向量。
在这里插入图片描述
在这里插入图片描述
将q与每个k做点积
在这里插入图片描述
再与V加权求和得到最终的结果。

自注意力机制主要体现在QKV都源于它本身,他们提取的是不同顺序的输入向量之间的联系与特征,再通过不同顺序向量之间的联系紧密性表现出来。

多头注意力

将原本的自注意力处理的向量分割成多个头处理。每个头都有自己独立的线性变换矩阵并行处理输入序列。首先将输入序列通过多个独立的线性变换矩阵,生成h组QKV、再对每一组都进行注意力计算,得到h个新的表示。接着把所有的输出拼接到一起,得到一个新的向量。最后对拼接后的向量进行线性变换得到多头注意力的输出。
在这里插入图片描述

实验部分

数据加载


data_path = './dataset/'
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]

dataset_train = ImageFolderDataset(os.path.join(data_path, "train"), shuffle=True)

# 一系列数据增强操作
trans_train = [
    transforms.RandomCropDecodeResize(size=224,
                                      scale=(0.08, 1.0),
                                      ratio=(0.75, 1.333)),
    transforms.RandomHorizontalFlip(prob=0.5),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_train = dataset_train.map(operations=trans_train, input_columns=["image"])
dataset_train = dataset_train.batch(batch_size=16, drop_remainder=True)

实现注意力机制

class Attention(nn.Cell):
# 参数:输入和输出向量的维度、注意力头数、输出保留的概率、注意力矩阵保留的概率。
    def __init__(self,
                 dim: int,
                 num_heads: int = 8,
                 keep_prob: float = 1.0,
                 attention_keep_prob: float = 1.0):
        super(Attention, self).__init__()

        self.num_heads = num_heads
        # 计算头的维度
        head_dim = dim // num_heads
        self.scale = ms.Tensor(head_dim ** -0.5)
		# 将输入映射到qkv的线性层
        self.qkv = nn.Dense(dim, dim * 3)
        self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)
        # 输出线性层
        self.out = nn.Dense(dim, dim)
        self.out_drop = nn.Dropout(p=1.0-keep_prob)
        # 矩阵乘法:注意力矩阵乘v
        self.attn_matmul_v = ops.BatchMatMul()
        # 矩阵乘法:q乘k
        self.q_matmul_k = ops.BatchMatMul(transpose_b=True)
        self.softmax = nn.Softmax(axis=-1)

    def construct(self, x):
        b, n, c = x.shape
        qkv = self.qkv(x)
        qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))
        qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))
        q, k, v = ops.unstack(qkv, axis=0)
        attn = self.q_matmul_k(q, k)
        attn = ops.mul(attn, self.scale)
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        out = self.attn_matmul_v(attn, v)
        out = ops.transpose(out, (0, 2, 1, 3))
        out = ops.reshape(out, (b, n, c))
        out = self.out(out)
        out = self.out_drop(out)

        return out

构建前馈神经网络和残差连接

class FeedForward(nn.Cell):
# 参数:输入特征的维度、隐藏层特征的维度、输出特征的维度、激活函数、保留概率
    def __init__(self,
                 in_features: int,
                 hidden_features: Optional[int] = None,
                 out_features: Optional[int] = None,
                 activation: nn.Cell = nn.GELU,
                 keep_prob: float = 1.0):
        super(FeedForward, self).__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        # 全连接层1
        self.dense1 = nn.Dense(in_features, hidden_features)
        self.activation = activation()
        # 全连接层2
        self.dense2 = nn.Dense(hidden_features, out_features)
        self.dropout = nn.Dropout(p=1.0-keep_prob)

    def construct(self, x):
        """Feed Forward construct."""
        x = self.dense1(x)
        x = self.activation(x)
        x = self.dropout(x)
        x = self.dense2(x)
        x = self.dropout(x)

        return x


class ResidualCell(nn.Cell):
    def __init__(self, cell):
        super(ResidualCell, self).__init__()
        self.cell = cell

    def construct(self, x):
    	# 将输入直接添加到输出
        return self.cell(x) + x

构建encoder

class TransformerEncoder(nn.Cell):
    def __init__(self,
                 dim: int,
                 num_layers: int,
                 num_heads: int,
                 mlp_dim: int,
                 keep_prob: float = 1.,
                 attention_keep_prob: float = 1.0,
                 drop_path_keep_prob: float = 1.0,
                 activation: nn.Cell = nn.GELU,
                 norm: nn.Cell = nn.LayerNorm):
        super(TransformerEncoder, self).__init__()
        layers = []
		# 使用刚刚定义的注意力类和前馈网络类构建encoder
        for _ in range(num_layers):
        # 包含两个归一化层、一个注意力层、一个前馈神经网络层
            normalization1 = norm((dim,))
            normalization2 = norm((dim,))
            attention = Attention(dim=dim,
                                  num_heads=num_heads,
                                  keep_prob=keep_prob,
                                  attention_keep_prob=attention_keep_prob)

            feedforward = FeedForward(in_features=dim,
                                      hidden_features=mlp_dim,
                                      activation=activation,
                                      keep_prob=keep_prob)
			# 将这些层用残差连接包装起来
            layers.append(
                nn.SequentialCell([
                    ResidualCell(nn.SequentialCell([normalization1, attention])),
                    ResidualCell(nn.SequentialCell([normalization2, feedforward]))
                ])
            )
        self.layers = nn.SequentialCell(layers)

    def construct(self, x):
        return self.layers(x)

如何将二维图片矩阵转化为一维词向量呢?
在Vit中,使用卷积将输入图像在每个channel上划分为16*16个patch,再将patch拉伸为一维向量。这样就接近词向量堆叠的效果。

class PatchEmbedding(nn.Cell):
    MIN_NUM_PATCHES = 4
	# 假设图像输入是24*24
    def __init__(self,
                 image_size: int = 224,
                 patch_size: int = 16,
                 embed_dim: int = 768,
                 input_channels: int = 3):
        super(PatchEmbedding, self).__init__()

        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = (image_size // patch_size) ** 2
        self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)

    def construct(self, x):
        """Path Embedding construct."""
        x = self.conv(x)
        b, c, h, w = x.shape
        x = ops.reshape(x, (b, c, h * w))
        x = ops.transpose(x, (0, 2, 1))

        return x

划分为patch后,会经过两个过程

  • class_embedding:在word vector之前增加一个类别标记,是一个可学习的参数
  • pos_embedding:将位置信息加入到patch矩阵中,是一个可学习的参数

构建完整模型

def init(init_type, shape, dtype, name, requires_grad):
    initial = initializer(init_type, shape, dtype).init_data()
    return Parameter(initial, name=name, requires_grad=requires_grad)


class ViT(nn.Cell):
    def __init__(self,
                 image_size: int = 224,
                 input_channels: int = 3,
                 patch_size: int = 16,
                 embed_dim: int = 768,
                 num_layers: int = 12,
                 num_heads: int = 12,
                 mlp_dim: int = 3072,
                 keep_prob: float = 1.0,
                 attention_keep_prob: float = 1.0,
                 drop_path_keep_prob: float = 1.0,
                 activation: nn.Cell = nn.GELU,
                 norm: Optional[nn.Cell] = nn.LayerNorm,
                 pool: str = 'cls') -> None:
        super(ViT, self).__init__()
		# 先转化patch
        self.patch_embedding = PatchEmbedding(image_size=image_size,
                                              patch_size=patch_size,
                                              embed_dim=embed_dim,
                                              input_channels=input_channels)
        num_patches = self.patch_embedding.num_patches
		# 加入cls token
        self.cls_token = init(init_type=Normal(sigma=1.0),
                              shape=(1, 1, embed_dim),
                              dtype=ms.float32,
                              name='cls',
                              requires_grad=True)
		# 加入pos embedding
        self.pos_embedding = init(init_type=Normal(sigma=1.0),
                                  shape=(1, num_patches + 1, embed_dim),
                                  dtype=ms.float32,
                                  name='pos_embedding',
                                  requires_grad=True)

        self.pool = pool
        self.pos_dropout = nn.Dropout(p=1.0-keep_prob)
        self.norm = norm((embed_dim,))
        self.transformer = TransformerEncoder(dim=embed_dim,
                                              num_layers=num_layers,
                                              num_heads=num_heads,
                                              mlp_dim=mlp_dim,
                                              keep_prob=keep_prob,
                                              attention_keep_prob=attention_keep_prob,
                                              drop_path_keep_prob=drop_path_keep_prob,
                                              activation=activation,
                                              norm=norm)
        self.dropout = nn.Dropout(p=1.0-keep_prob)
        self.dense = nn.Dense(embed_dim, num_classes)

    def construct(self, x):
        """ViT construct."""
        x = self.patch_embedding(x)
        cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))
        x = ops.concat((cls_tokens, x), axis=1)
        x += self.pos_embedding

        x = self.pos_dropout(x)
        x = self.transformer(x)
        x = self.norm(x)
        x = x[:, 0]
        if self.training:
            x = self.dropout(x)
        x = self.dense(x)

        return x

模型训练

# define super parameter
epoch_size = 10
momentum = 0.9
num_classes = 1000
resize = 224
step_size = dataset_train.get_dataset_size()

# construct model
network = ViT()

# load ckpt
vit_url = "https://download.mindspore.cn/vision/classification/vit_b_16_224.ckpt"
path = "./ckpt/vit_b_16_224.ckpt"

vit_path = download(vit_url, path, replace=True)
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)

# 学习率衰减函数
lr = nn.cosine_decay_lr(min_lr=float(0),
                        max_lr=0.00005,
                        total_step=epoch_size * step_size,
                        step_per_epoch=step_size,
                        decay_epoch=10)

# 定义优化器
network_opt = nn.Adam(network.trainable_params(), lr, momentum)

# 定义损失函数
class CrossEntropySmooth(LossBase):
    def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
        super(CrossEntropySmooth, self).__init__()
        self.onehot = ops.OneHot()
        self.sparse = sparse
        self.on_value = ms.Tensor(1.0 - smooth_factor, ms.float32)
        self.off_value = ms.Tensor(1.0 * smooth_factor / (num_classes - 1), ms.float32)
        self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)

    def construct(self, logit, label):
        if self.sparse:
            label = self.onehot(label, ops.shape(logit)[1], self.on_value, self.off_value)
        loss = self.ce(logit, label)
        return loss


network_loss = CrossEntropySmooth(sparse=True,
                                  reduction="mean",
                                  smooth_factor=0.1,
                                  num_classes=num_classes)

# set checkpoint
ckpt_config = CheckpointConfig(save_checkpoint_steps=step_size, keep_checkpoint_max=100)
ckpt_callback = ModelCheckpoint(prefix='vit_b_16', directory='./ViT', config=ckpt_config)

# initialize model
# "Ascend + mixed precision" can improve performance
ascend_target = (ms.get_context("device_target") == "Ascend")
if ascend_target:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O2")
else:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics={"acc"}, amp_level="O0")

# train model
model.train(epoch_size,
            dataset_train,
            callbacks=[ckpt_callback, LossMonitor(125), TimeMonitor(125)],
            dataset_sink_mode=False,)

模型评价

dataset_val = ImageFolderDataset(os.path.join(data_path, "val"), shuffle=True)

trans_val = [
    transforms.Decode(),
    transforms.Resize(224 + 32),
    transforms.CenterCrop(224),
    transforms.Normalize(mean=mean, std=std),
    transforms.HWC2CHW()
]

dataset_val = dataset_val.map(operations=trans_val, input_columns=["image"])
dataset_val = dataset_val.batch(batch_size=16, drop_remainder=True)

# construct model
network = ViT()

# load ckpt
param_dict = ms.load_checkpoint(vit_path)
ms.load_param_into_net(network, param_dict)

network_loss = CrossEntropySmooth(sparse=True,
                                  reduction="mean",
                                  smooth_factor=0.1,
                                  num_classes=num_classes)

# 使用Top_1_Accuracy和Top_5_Accuracy评价
eval_metrics = {'Top_1_Accuracy': train.Top1CategoricalAccuracy(),
                'Top_5_Accuracy': train.Top5CategoricalAccuracy()}

if ascend_target:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O2")
else:
    model = train.Model(network, loss_fn=network_loss, optimizer=network_opt, metrics=eval_metrics, amp_level="O0")

# evaluate model
result = model.eval(dataset_val)
print(result)

总结

本章使用ImageNet的数据集上完成了ViT模型的构建和推理,学习了ViT网络的构成。

打卡凭证

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1930535.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

kafka开启kerberos和ACL

作者:恩慈 一、部署kafka-KB包 1.上传软件包 依次点击 部署中心----部署组件----上传软件包 选择需要升级的kafka版本并点击确定 2.部署kafka 依次点击部署中心----部署组件----物理/虚拟机部署----选择集群----下一步 选择手动部署-…

GB28181语音对讲实现

1.前提准备 1.1.首先将设备接入SIP网关服务 我这里使用的是开源的wvp-GB28181-pro项目,首先将设备接入到SIP网关服务。 配置信息如下: 1.2.修改设备配置 设备接入后,会自动注册到平台,可以在国标设备栏看到刚刚注册的设备信息…

K8S私有云裸金属服务器负载均衡器OpenELB——筑梦之路

OpenELB介绍 OpenELB 是一个专为裸机 Kubernetes 集群设计的开源负载均衡器实现。 在云服务环境中的 Kubernetes 集群里,通常可以用云服务提供商提供的负载均衡服务来暴露 Service,但是在本地没办法这样操作。而 OpenELB 可以让用户在裸金属服务器、边缘…

模块化和包管理工具

一,模块化 1.定义 将一个复杂的程序文件依据一定规则(规范)拆分成多个文件的过程称之为 模块化 其中拆分出的 每个文件就是一个模块 ,模块的内部数据是私有的,不过模块可以暴露内部数据以便其他模块使用 2.模块化…

6.Dockerfile及Dockerfile常用指令

Dockerfile是构建docker镜像的脚本文件 Dockerfile有很多的指令构成,指令由上到下依次运行。 每一条指令就是一层镜像,层越多,体积就越大,启动速度也越慢 井号开头的行是注释行。指令写大写写小写都行,但一般都写为…

【Linux】多线程_9

文章目录 九、多线程10. 线程池 未完待续 九、多线程 10. 线程池 这里我没实现一些 懒汉单例模式 的线程池,并且包含 日志打印 的线程池: Makefile: threadpool:Main.ccg -o $ $^ -stdc11 -lpthread .PHONY:clean clean:rm -f threadpoolT…

前端开发常用命令行工具及操作命令(Node.js 和 npm、Yarn、vue、React、Git、Webpack)

在前端开发中,掌握常用的命令行工具和命令可以大大提高开发效率。接下来将介绍一些常用的前端命令行工具和命令,涵盖从项目初始化到构建和部署的各个环节。 1. Node.js 和 npm 安装 Node.js 和 npm 首先,需要安装 Node.js。安装 Node.js 时…

FreeRTOS的中断管理、临界资源保护、任务调度

什么是中断? 简介:让CPU打断正常运行的程序,转而去处理紧急的事件(程序),就叫中断。 中断优先级分组设置 ARM Cortex-M 使用了 8 位宽的寄存器来配置中断的优先等级,这个寄存器就是中断优先级…

硅纪元视角 | 微软开发全新AI模型,革新电子表格处理效率!

在数字化浪潮的推动下,人工智能(AI)正成为塑造未来的关键力量。硅纪元视角栏目紧跟AI科技的最新发展,捕捉行业动态;提供深入的新闻解读,助您洞悉技术背后的逻辑;汇聚行业专家的见解,…

在ArcGIS Pro中新建空图层的最快方法

01常规方法 一般情况下,如果我们想新建一个要素图层,常规方法是: 在目录框中,找一个gdb数据库,右键——新建——要素类: 设置好各种属性: 创建结果如下: 最后将要素类拖入地图中即…

openeuler 终端中文显示乱码、linux vim中文乱码

1、解决终端乱码 网上很多教程试了都不生效,以下方法有效: 确认终端支持中文显示: echo $LANG 输出应该包含 UTF-8,例如 en_US.UTF-8。如果不是,您可以通过以下命令设置为 UTF-8: export LANGzh_CN.UTF-8…

Rust RefCell<T> 和内部可变性模式

内部可变性(Interior mutability)是 Rust 中的一个设计模式,它允许你即使在有不可变引用时也可以改变数据,这通常是借用规则所不允许的。为了改变数据,该模式在数据结构中使用 unsafe 代码来模糊 Rust 通常的可变性和借…

阿里云CDN- https(设计支付宝春节开奖业务)

HTTP相关概念 1. HTTP概述 http是最广泛的网络协议,是客户端与服务器之间的请求与应答的标准(TCP),用于www服务器传输超文本到本地浏览器的传输协议,使浏览器更加高效,网络传输减少。 2.HTTPS概述 http…

【总结】实际业务场景中锁、事务、异常如何考虑使用?

文章目录 锁处理目的:考虑锁控制思路:生命周期接口并发控制解决方案:测试锁是否生效:模拟多线程并发场景的2种方式: 事务处理目的:考虑事务控制思路:解决方案: 总结 锁处理 目的&am…

集群架构-web服务器(接入负载均衡+数据库+会话保持redis)--15454核心配置详解

紧接着前面的集群架构深化—中小型公司(拓展到大型公司业务)–下面图简单回顾一下之前做的及故障核心知识总结(等后期完全整理后,上传资源希望能帮大家) web集群架构-接入负载均衡部署web02服务器等 web集群-搭建web0…

[C++]一些list,stack和queue选择题和编程题

这时我们学完后的应用 一、选择题 1.下面有关vector和list的区别,描述错误的是( ) A.vector拥有一段连续的内存空间,因此支持随机存取,如果需要高效的随机存取,应该使用vector B.list拥有一段不连续的内存空间,如果需要大量的插入…

JavaScript基础(十四)

函数 很多人一看到这两个字就头大,可能由于多年被数学摧残有不小阴影,放心,我们这里的函数不是那些东西,在编程中我们的函数指的是: 程序的基本单元,是完成特定任务的代码语句块。 我们在写程序时,可能会…

【RAG探索第4讲】KG+RAG丨基于知识图谱优化大型语言模型方法

原文链接:【RAG探索第4讲】KGRAG丨基于生物医学知识图谱优化的大型语言模型提示生成方法 一、现有问题: LLMs在处理特定领域或高度专业化查询时缺乏专业知识,导致回答不够准确和可靠。 LLMs可能会产生事实错误(即幻觉&#xff0…

【整洁单元测试】测试气味Test Smells

背景 "Code smell" 是软件开发中的一个术语,指的是代码中可能表明存在问题的某些迹象或模式。这些迹象本身并不表示代码一定有错误,但它们通常表明代码可能难以理解、维护或扩展。Code smells 可以视为一种警告,提示开发者需要进一…

0基础学python-14:python进阶之面向对象

前言 Python是一门解释型、面向对象以及动态数据类型的高级程序设计语言,今天所要说的就是极为重要的概念,面向对象。 一、面向对象的核心概念: 1.类(Class): 类是对象的抽象描述,是面向对象编…