YOLOv8改进 | 检测头 | 融合渐进特征金字塔的检测头【AFPN3】

news2024/11/15 13:59:03

秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有50+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


在目标检测任务中,多尺度特征对于编码具有尺度变化的对象非常重要。常用的多尺度特征提取策略是采用经典的由上至下和由下至上的特征金字塔网络。然而,这些方法存在特征信息丢失或降级的问题,影响了非相邻层次之间的融合效果。本文介绍了一个渐进特征金字塔网络(AFPN)来支持非相邻层次之间的直接交互。AFPN从融合两个相邻的低层特征开始,并逐渐将更高层的特征融入融合过程中。这样,可以避免非相邻层次之间较大的语义差距。考虑到在每个空间位置的特征融合过程中可能出现的多对象信息冲突,进一步利用自适应空间融合操作来减轻这些不一致性。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转

目录

1. 原理

2. 将AFPN添加到YOLOv8中

2.1 AFPN的代码实现

2.2 更改init.py文件

2.3 添加yaml文件

2.4 在task.py中进行注册

2.5 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:AFPN: Asymptotic Feature Pyramid Network for Object Detection——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

AFPN(渐近特征金字塔网络)旨在通过解决传统特征金字塔网络(FPN)中特征信息丢失或退化的问题来增强对象检测。以下是 AFPN 背后的关键原则的总结:

AFPN 的关键原则

渐近特征融合

  • AFPN 从融合两个相邻的低级特征开始,并逐步合并高级特征。这种方法避免了非相邻级别之间的较大语义差距导致融合结果不佳。

  • 该过程从最低级特征的融合开始,然后在后续阶段添加高级特征,最后集成最顶层特征。

自适应空间融合

  • 在融合过程中,自适应空间融合用于解决每个空间位置上多对象信息中的潜在冲突。

  • 此操作有助于在特征融合期间过滤和保留有用信息,同时抑制矛盾信息。

自下而上和自上而下的路径

  • AFPN 结合了自下而上和自上而下的路径,以确保有效利用来自低级特征的详细信息和来自高级特征的语义信息。

  • 这种双路径方法有助于在整个网络中保持详细和语义信息的完整性。

效率和性能

  • 与其他特征金字塔网络相比,AFPN 旨在以更少的参数和计算复杂度实现具有竞争力的结果。

  • 实验结果表明,AFPN 在保持计算效率的同时提高了物体检测任务的性能。

架构概述

  • 多级特征提取

  • 从骨干网络中提取不同级别的特征,通常表示为 {C2、C3、C4、C5}。

  • 首先融合低级特征(C2 和 C3),然后融合高级特征(C4 和 C5)。

  • 特征融合过程

  • 融合过程是渐进的,先合并较低级别的特征,然后再合并较高级别的特征。

  • 这种渐近融合有助于减少语义差距并增强融合效果。

  • 维度处理

  • 1×1 卷积和双线性插值用于对特征进行上采样以对齐维度。

  • 根据需要应用不同的卷积核和步幅进行下采样。

评估和结果

  • 它在 MS COCO 2017 等数据集上的平均精度 (AP) 等性能指标方面表现出显着改进。

  • 与其他最先进的特征金字塔网络相比,该网络在保持适中的参数数量和 GFLOP 的同时实现了更好的结果。

结论

AFPN 代表了一种创新的特征金字塔网络方法,它专注于非相邻层之间的直接交互和自适应空间融合以处理多对象信息冲突。其架构确保了高效、有效的特征融合,从而提高了对象检测性能。

2. 将AFPN添加到YOLOv8中

2.1 AFPN的代码实现

关键步骤一: 将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/head.py中,并在该文件的__all__中添加“Detect_AFPN3”

import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import DFL
from ultralytics.nn.modules.conv import Conv
from ultralytics.utils.tal import dist2bbox, make_anchors

__all__ = ['Detect_AFPN3']


def BasicConv(filter_in, filter_out, kernel_size, stride=1, pad=None):
    if not pad:
        pad = (kernel_size - 1) // 2 if kernel_size else 0
    else:
        pad = pad
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),
        ("relu", nn.ReLU(inplace=True)),
    ]))


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, filter_in, filter_out):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(filter_in, filter_out, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(filter_out, momentum=0.1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(filter_out, filter_out, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(filter_out, momentum=0.1)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += residual
        out = self.relu(out)

        return out


class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels, scale_factor=2):
        super(Upsample, self).__init__()

        self.upsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 1),
            nn.Upsample(scale_factor=scale_factor, mode='bilinear')
        )

    def forward(self, x):
        x = self.upsample(x)

        return x


class Downsample_x2(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x2, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 2, 2, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x4(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x4, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 4, 4, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class Downsample_x8(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x8, self).__init__()

        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 8, 8, 0)
        )

    def forward(self, x, ):
        x = self.downsample(x)

        return x


class ASFF_2(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_2, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 2, 2, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_3(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_3, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2, input3):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :] + \
                            input3 * levels_weight[:, 2:, :, :]

        out = self.conv(fused_out_reduced)

        return out


class ASFF_4(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_4, self).__init__()

        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_0 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input0, input1, input2):
        level_0_weight_v = self.weight_level_0(input0)
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)

        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input0 * levels_weight[:, 0:1, :, :] + \
                            input1 * levels_weight[:, 1:2, :, :] + \
                            input2 * levels_weight[:, 2:3, :, :]

        out = self.conv(fused_out_reduced)

        return out


class BlockBody(nn.Module):
    def __init__(self, channels=[64, 128, 256, 512]):
        super(BlockBody, self).__init__()

        self.blocks_scalezero1 = nn.Sequential(
            BasicConv(channels[0], channels[0], 1),
        )
        self.blocks_scaleone1 = nn.Sequential(
            BasicConv(channels[1], channels[1], 1),
        )
        self.blocks_scaletwo1 = nn.Sequential(
            BasicConv(channels[2], channels[2], 1),
        )

        self.downsample_scalezero1_2 = Downsample_x2(channels[0], channels[1])
        self.upsample_scaleone1_2 = Upsample(channels[1], channels[0], scale_factor=2)

        self.asff_scalezero1 = ASFF_2(inter_dim=channels[0])
        self.asff_scaleone1 = ASFF_2(inter_dim=channels[1])

        self.blocks_scalezero2 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone2 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )

        self.downsample_scalezero2_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero2_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_scaleone2_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_scaleone2_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.upsample_scaletwo2_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.upsample_scaletwo2_4 = Upsample(channels[2], channels[0], scale_factor=4)

        self.asff_scalezero2 = ASFF_3(inter_dim=channels[0])
        self.asff_scaleone2 = ASFF_3(inter_dim=channels[1])
        self.asff_scaletwo2 = ASFF_3(inter_dim=channels[2])

        self.blocks_scalezero3 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone3 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo3 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )

        self.downsample_scalezero3_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero3_4 = Downsample_x4(channels[0], channels[2])
        self.upsample_scaleone3_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.downsample_scaleone3_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_scaletwo3_4 = Upsample(channels[2], channels[0], scale_factor=4)
        self.upsample_scaletwo3_2 = Upsample(channels[2], channels[1], scale_factor=2)

        self.asff_scalezero3 = ASFF_4(inter_dim=channels[0])
        self.asff_scaleone3 = ASFF_4(inter_dim=channels[1])
        self.asff_scaletwo3 = ASFF_4(inter_dim=channels[2])

        self.blocks_scalezero4 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone4 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo4 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )

    def forward(self, x):
        x0, x1, x2 = x

        x0 = self.blocks_scalezero1(x0)
        x1 = self.blocks_scaleone1(x1)
        x2 = self.blocks_scaletwo1(x2)

        scalezero = self.asff_scalezero1(x0, self.upsample_scaleone1_2(x1))
        scaleone = self.asff_scaleone1(self.downsample_scalezero1_2(x0), x1)

        x0 = self.blocks_scalezero2(scalezero)
        x1 = self.blocks_scaleone2(scaleone)

        scalezero = self.asff_scalezero2(x0, self.upsample_scaleone2_2(x1), self.upsample_scaletwo2_4(x2))
        scaleone = self.asff_scaleone2(self.downsample_scalezero2_2(x0), x1, self.upsample_scaletwo2_2(x2))
        scaletwo = self.asff_scaletwo2(self.downsample_scalezero2_4(x0), self.downsample_scaleone2_2(x1), x2)

        x0 = self.blocks_scalezero3(scalezero)
        x1 = self.blocks_scaleone3(scaleone)
        x2 = self.blocks_scaletwo3(scaletwo)

        scalezero = self.asff_scalezero3(x0, self.upsample_scaleone3_2(x1), self.upsample_scaletwo3_4(x2))
        scaleone = self.asff_scaleone3(self.downsample_scalezero3_2(x0), x1, self.upsample_scaletwo3_2(x2))
        scaletwo = self.asff_scaletwo3(self.downsample_scalezero3_4(x0), self.downsample_scaleone3_2(x1), x2)

        scalezero = self.blocks_scalezero4(scalezero)
        scaleone = self.blocks_scaleone4(scaleone)
        scaletwo = self.blocks_scaletwo4(scaletwo)

        return scalezero, scaleone, scaletwo


class AFPN(nn.Module):
    def __init__(self,
                 in_channels=[256, 512, 1024, 2048],
                 out_channels=128):
        super(AFPN, self).__init__()

        self.fp16_enabled = False

        self.conv0 = BasicConv(in_channels[0], in_channels[0] // 8, 1)
        self.conv1 = BasicConv(in_channels[1], in_channels[1] // 8, 1)
        self.conv2 = BasicConv(in_channels[2], in_channels[2] // 8, 1)
        # self.conv3 = BasicConv(in_channels[3], in_channels[3] // 8, 1)

        self.body = nn.Sequential(
            BlockBody([in_channels[0] // 8, in_channels[1] // 8, in_channels[2] // 8])
        )

        self.conv00 = BasicConv(in_channels[0] // 8, out_channels, 1)
        self.conv11 = BasicConv(in_channels[1] // 8, out_channels, 1)
        self.conv22 = BasicConv(in_channels[2] // 8, out_channels, 1)
        # self.conv33 = BasicConv(in_channels[3] // 8, out_channels, 1)

        # init weight
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight, gain=0.02)
            elif isinstance(m, nn.BatchNorm2d):
                torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
                torch.nn.init.constant_(m.bias.data, 0.0)

    def forward(self, x):
        x0, x1, x2 = x

        x0 = self.conv0(x0)
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        # x3 = self.conv3(x3)

        out0, out1, out2 = self.body([x0, x1, x2])

        out0 = self.conv00(out0)
        out1 = self.conv11(out1)
        out2 = self.conv22(out2)

        return out0, out1, out2


class Detect_AFPN3(nn.Module):
    """YOLOv8 Detect head for detection models."""
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, channel=256, ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(channel, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(channel, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
        self.AFPN = AFPN(ch, channel)

    def forward(self, x):
        """Concatenates and returns predicted bounding boxes and class probabilities."""
        x = list(self.AFPN(x))
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # avoid TF FlexSplitV ops
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides

        if self.export and self.format in ('tflite', 'edgetpu'):
            # Normalize xywh with image size to mitigate quantization error of TFLite integer models as done in YOLOv5:
            # https://github.com/ultralytics/yolov5/blob/0c8de3fca4a702f8ff5c435e67f378d1fce70243/models/tf.py#L307-L309
            # See this PR for details: https://github.com/ultralytics/ultralytics/pull/1695
            img_h = shape[2] * self.stride[0]
            img_w = shape[3] * self.stride[0]
            img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
            dbox /= img_size

        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

AFPN(Asymptotic Feature Pyramid Network)的主要原理和图像处理流程如下:

主要原理

  1. 多尺度特征提取:AFPN在物体检测任务中利用多尺度特征编码来处理对象的尺度变化。传统的特征金字塔网络(如FPN)通常采用自顶向下和自底向上的方式进行多尺度特征提取。然而,这些方法在融合非相邻层的特征时会导致信息损失或退化。

  2. 渐近融合:AFPN采用渐近融合的方法,从融合两个相邻的低层特征开始,逐步将更高层的特征引入融合过程中。这种方式避免了非相邻层之间较大的语义差距,保留了更多有用的信息。

  3. 自适应空间融合:在每个空间位置的特征融合过程中,可能会出现多对象信息冲突的问题。AFPN采用自适应空间融合操作来缓解这些不一致性,确保融合过程中保留有用的信息。

图像处理流程

  1. 特征提取:从主干网络(如ResNet-50或ResNet-101)的每一层提取最后的特征,得到不同尺度的特征集{C2, C3, C4, C5}。对于YOLO架构,只输入{C3, C4, C5}到特征金字塔网络,生成输出{P3, P4, P5}。

  2. 低层特征融合:首先将低层特征C2和C3输入到特征金字塔网络进行融合。通过1×1卷积和双线性插值的方法对特征进行上采样,确保特征尺寸一致。

  3. 高层特征渐近融合:在低层特征融合之后,逐步将更高层的特征(如C4和C5)引入融合过程中。利用不同卷积核和步幅进行下采样,确保特征尺寸的一致性。

  4. 自适应空间融合:在特征融合过程中,使用自适应空间融合操作过滤多层特征,以解决不同对象在同一位置的信息冲突问题。

  5. 生成多尺度特征:完成融合后,生成多尺度特征集{P2, P3, P4, P5, P6}(对于YOLO架构为{P3, P4, P5}),这些特征用于后续的物体检测。

优势

  • 直接特征交互:避免了非相邻层特征的直接交互引起的信息损失或退化。

  • 高效的特征融合:通过渐近融合和自适应空间融合,有效保留了多层次的详细和语义信息。

  • 提升检测性能:实验结果表明,AFPN在MS COCO数据集上相比其他特征金字塔网络取得了更具竞争力的结果,同时保持了较低的计算成本。

AFPN在物体检测任务中显示出了显著的优势,尤其是在处理尺度变化和复杂场景下的信息融合方面。

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/v8下面新建文件yolov8_detect_AFPN.yaml文件,粘贴下面的内容

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect_AFPN3, [nc, 256]]  # Detect(P3, P4, P5) 

温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
max_channels: 512 # max_channels
 
# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
max_channels: 768 # max_channels
 
# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
max_channels: 512 # max_channels

2.4 在task.py中进行注册

关键步骤四:在task.py的中进行注册,

  1. 在BaseModel的类下 _apply的函数下添加Detect_AFPN3,如下图

        2. 在DetectionModel类下的__init__函数中,添加Detect_AFPN3,如下图所示

        3. 在parse_model函数中,在elif语句添加Detect_AFPN3,如下图所示,

        4. 在guess_model_task的函数中添加Detect_AFPN3,如下图所示

2.5 执行程序

关键步骤五:在ultralytics文件中新建train.py,将model的参数路径设置为yolov8_detect_AFPN.yaml的路径即可

from ultralytics import YOLO
 
# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
 
model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_detect_AFPN.yaml')  # build from YAML and transfer weights
 
# Train the model
model.train(batch=16)

 🚀运行程序,如果出现下面的内容则说明添加成功🚀

                  from  n    params  module                                       arguments                     
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]                 
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]                
  2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]             
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]                
  4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]             
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]           
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]              
  8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]           
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]                 
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]                 
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]                  
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]                
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]                 
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]              
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]                 
 22        [15, 18, 21]  1   1415705  ultralytics.nn.Addmodules.AFPNHead3.Detect_AFPN3[1, 256, [64, 128, 256]]      
YOLOv8_AFPN summary: 694 layers, 3,675,241 parameters, 3,675,225 gradients, 12.2 GFLOPs

3. 完整代码分享

https://pan.baidu.com/s/1gNLmUV7QxYwrh8o7yjJq7Q?pwd=h7f3

提取码: h7f3 

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8n GFLOPs

img

改进后的GFLOPs

5. 进阶

可以结合损失函数或者卷积模块进行多重改进

6. 总结

渐近特征金字塔网络 (AFPN) 是一种先进的架构,旨在通过解决传统特征金字塔网络中常见的特征信息丢失问题来改进对象检测。它通过渐近特征融合过程实现这一目标,该过程从融合相邻的低级特征开始,然后逐步合并高级特征。这种逐步融合减少了非相邻级别之间的语义差距,从而增强了融合结果。采用自适应空间融合来处理每个空间位置上的多对象信息冲突,过滤和保留有用信息,同时抑制矛盾数据。AFPN 同时使用自下而上和自上而下的路径来有效利用详细的低级和语义高级信息,从而保持整个网络中特征的完整性。这种双路径方法与用于维度对齐的高效卷积运算相结合,可显著提高对象检测性能,同时保持较低的计算复杂度。AFPN 的创新方法确保以更少的参数和更高的效率获得具有竞争力的结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1928746.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

文件安全传输系统,如何保障信创环境下数据的安全传输?

文件安全传输系统是一套旨在保护数据在传输过程中的安全性和完整性的技术或解决方案。通常包括以下几个关键组件: 加密:使用强加密算法来确保文件在传输过程中不被未授权访问。 身份验证:确保只有授权用户才能访问或传输文件。 完整性校验…

数据库管理-第220期 Oracle的高可用-03(20240715)

数据库管理220期 2024-07-15 数据库管理-第220期 Oracle的高可用-03(20240715)1 AC/TAC2 配置Service3 用户权限4 端口开放总结 数据库管理-第220期 Oracle的高可用-03(20240715) 作者:胖头鱼的鱼缸(尹海文…

量化发展历史简述,QMT/PTrade+恒生UFT、LDP极速柜台适用哪些情形?

量化发展简述 1.2004年萌发阶段:策略局限在量化择时,量化选股等; 光大保德信量化核 心基金 上投摩根阿尔法基 金 金融危机,海归引入。 2.2010量化元年:中低频交易为主,主要依靠套利、对冲、多因子策略等…

****react的antdesign 下拉组件ProFormSelect编辑首次不回显问题

1、使用valueEnum无法自动回显 2、要使用options会自动回显

AutoMQ 社区双周精选第十二期(2024.06.29~2024.07.12)

本期概要 欢迎来到 AutoMQ 第十一期双周精选!在过去两周里,主干动态方面,AutoMQ 跟进了 Apache Kafka 3.4.x BUG 修复,并进行了CPU & GC 性能优化,另外,AutoBalancing 的 Reporter 和 Retriever 也将支…

风险评估:IIS的安全配置,IIS安全基线检查加固

「作者简介」:冬奥会网络安全中国代表队,CSDN Top100,就职奇安信多年,以实战工作为基础著作 《网络安全自学教程》,适合基础薄弱的同学系统化的学习网络安全,用最短的时间掌握最核心的技术。 这一章节我们需…

51单片机5(GPIO简介)

一、序言:不论学习什么单片机,最简单的外设莫过于I口的高低电平的操作,接下来,我们将给大家介绍一下如何在创建好的工程模板上面,通过控制51单片机的GPIO来使我们的开发板上的LED来点亮。 二、51单片机GPIO介绍&#…

实验二:图像灰度修正

目录 一、实验目的 二、实验原理 三、实验内容 四、源程序和结果 源程序(python): 结果: 五、结果分析 一、实验目的 掌握常用的图像灰度级修正方法,包括图象的线性和非线性灰度点运算和直方图均衡化法,加深对灰度直方图的理解。掌握对比度增强、直方图增强的原理,…

C++相关概念和易错语法(21)(虚函数、协变、析构函数的重写)

多态的核心是虚函数&#xff0c;本文从虚函数出发&#xff0c;根据原理慢慢推进得到结论&#xff0c;进而理解多态 1.虚函数 先看一下下面的代码&#xff0c;想想什么导致了这个结果 #include <iostream> using namespace std;class A { public:virtual void test(){co…

书生实战营-LLM实战笔记

训练营非常好&#xff0c;有个github上的tutorial Tutorial/docs/L0/Linux/readme.md at camp3 InternLM/Tutorial GitHub 第1关卡 linux 的基础知识 https://github.com/InternLM/Tutorial/blob/camp3/docs/L0/Linux/readme.md#linuxinternstudio-%E5%85%B3%E5%8D%A1 非…

AIGC笔记--基于Stable Diffusion实现图片的inpainting

1--完整代码 SD_Inpainting 2--简单代码 import PIL import torch import numpy as np from PIL import Image from tqdm import tqdm import torchvision from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler from transformers import CLIPTextMod…

【全面介绍Pip换源】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

产品经理-产品经理会在项目中遇到的几个问题(16)

项目中遇到了需求变更怎么办&#xff1f; 首先要弄清楚需求变更的原因是什么。如果是因为在迭代的过程中更好地理解了用户需求 进而产生了更好的需求则完全是正常的。如果是因为老板的需求 那就需要和老板沟通清楚&#xff0c;并且确保自己能理解老板的需求&#xff0c;而且这个…

【数据结构】高效解决连通性问题的并查集详解及Python实现

文章目录 1. 并查集&#xff1a;一种高效的数据结构2. 并查集的基本操作与优化2.1 初始化2.2 查找操作与路径压缩2.3 合并操作与按秩合并 3. 并查集的应用3.1 判断连通性3.2 计算连通分量 4. 并查集的实际案例4.1 图的连通性问题4.2 网络连接问题 5. 并查集的优缺点5.1 优点5.2…

哪些网站是获取独立站外链的最佳选择?

想要为独立站获取外链&#xff0c;有几个地方可以考虑&#xff0c;首先自然是最有效的博客和文章投稿网站&#xff0c;找那些与你的行业相关的博客和内容平台&#xff0c;撰写高质量的文章&#xff0c;里面自然地嵌入你的链接。这是最有价值的外链 然后不分其他&#xff0c;效…

ESP32-S3多模态交互方案在线AI语音设备应用,启明云端乐鑫代理商

随着物联网&#xff08;IoT&#xff09;和人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;嵌入式设备正逐渐变得智能化&#xff0c;让我们的家庭生活变得更加智能化和个性化。 随着大型语言模型的不断进步和优化&#xff0c;AI语音机器人设备能够实现更加智能、…

超越 Transformer开启高效开放语言模型的新篇章

在人工智能快速发展的今天&#xff0c;对于高效且性能卓越的语言模型的追求&#xff0c;促使谷歌DeepMind团队开发出了RecurrentGemma这一突破性模型。这款新型模型在论文《RecurrentGemma&#xff1a;超越Transformers的高效开放语言模型》中得到了详细介绍&#xff0c;它通过…

软件工程课设——成绩管理系统

软件工程课设——成绩管理系统 该文档是软件工程课程设计&#xff0c;成绩管理子系统的开发模块仓库。 功能分析 从面向的用户分&#xff0c;成绩管理子系统主要面向三类用户&#xff0c;即至少需要满足这三类用户的需求&#xff1a; 学生&#xff1a;学生是成绩管理系统的…

实现keepalive+Haproxyde 的高可用

需要准备五台实验机 一台客户机&#xff1a;test1 两台&#xff1a;一主一备的实验机&#xff1a;test2 test3 两台真实服务器&#xff1a;nginx1 nginx2 实验 首先在两台实验机上安装Haproxy 安装依赖环境&#xff0c;并将Haproxy的包进行解压处理 yum install -y pcre…

什么ISP?什么是IAP?

做单片机开发的工程师经常会听到两个词&#xff1a;ISP和IAP&#xff0c;但新手往往对这两个概念不是很清楚&#xff0c;今天就来和大家聊聊什么是ISP&#xff0c;什么是IAP&#xff1f; 一、ISP ISP的全称是&#xff1a;In System Programming&#xff0c;即在系统编程&…