STM32智能环境监测系统教程

news2024/11/9 3:59:43

目录

  1. 引言
  2. 环境准备
  3. 智能环境监测系统基础
  4. 代码实现:实现智能环境监测系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:环境监测与管理
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能环境监测系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对环境数据的实时监控、自动处理和数据传输。本文将详细介绍如何在STM32系统中实现一个智能环境监测系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F4系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如温湿度传感器、PM2.5传感器、CO2传感器、VOC传感器等
  4. 执行器:如风扇、报警器
  5. 通信模块:如Wi-Fi模块、LoRa模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能环境监测系统基础

控制系统架构

智能环境监测系统由以下部分组成:

  1. 数据采集模块:用于采集环境中的温度、湿度、PM2.5、CO2、VOC等数据
  2. 数据处理与控制模块:对采集的数据进行处理和分析,生成控制信号
  3. 通信与网络系统:实现环境数据与服务器或其他设备的通信
  4. 显示系统:用于显示系统状态和环境数据
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过各种传感器采集环境数据,并实时显示在OLED显示屏上。系统通过数据处理和网络通信,实现对环境数据的监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能环境监测系统

4.1 数据采集模块

配置温湿度传感器

使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "dht22.h"

I2C_HandleTypeDef hi2c1;

void I2C1_Init(void) {
    hi2c1.Instance = I2C1;
    hi2c1.Init.ClockSpeed = 100000;
    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
    hi2c1.Init.OwnAddress1 = 0;
    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    hi2c1.Init.OwnAddress2 = 0;
    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
    HAL_I2C_Init(&hi2c1);
}

void Read_Temperature_Humidity(float* temperature, float* humidity) {
    DHT22_ReadAll(temperature, humidity);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    DHT22_Init();

    float temperature, humidity;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        HAL_Delay(1000);
    }
}
配置PM2.5传感器

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

UART_HandleTypeDef huart1;

void UART1_Init(void) {
    huart1.Instance = USART1;
    huart1.Init.BaudRate = 9600;
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    huart1.Init.StopBits = UART_STOPBITS_1;
    huart1.Init.Parity = UART_PARITY_NONE;
    huart1.Init.Mode = UART_MODE_TX_RX;
    huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart1.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart1);
}

uint32_t Read_PM25_Level(void) {
    uint8_t buffer[32];
    HAL_UART_Receive(&huart1, buffer, 32, HAL_MAX_DELAY);
    uint32_t pm25_level = (buffer[2] << 8) | buffer[3];
    return pm25_level;
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART1_Init();

    uint32_t pm25_level;

    while (1) {
        pm25_level = Read_PM25_Level();
        HAL_Delay(1000);
    }
}
配置CO2传感器

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

UART_HandleTypeDef huart2;

void UART2_Init(void) {
    huart2.Instance = USART2;
    huart2.Init.BaudRate = 9600;
    huart2.Init.WordLength = UART_WORDLENGTH_8B;
    huart2.Init.StopBits = UART_STOPBITS_1;
    huart2.Init.Parity = UART_PARITY_NONE;
    huart2.Init.Mode = UART_MODE_TX_RX;
    huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart2.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart2);
}

uint32_t Read_CO2_Level(void) {
    uint8_t buffer[32];
    HAL_UART_Receive(&huart2, buffer, 32, HAL_MAX_DELAY);
    uint32_t co2_level = (buffer[2] << 8) | buffer[3];
    return co2_level;
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART2_Init();

    uint32_t co2_level;

    while (1) {
        co2_level = Read_CO2_Level();
        HAL_Delay(1000);
    }
}
配置VOC传感器

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

UART_HandleTypeDef huart3;

void UART3_Init(void) {
    huart3.Instance = USART3;
    huart3.Init.BaudRate = 9600;
    huart3.Init.WordLength = UART_WORDLENGTH_8B;
    huart3.Init.StopBits = UART_STOPBITS_1;
    huart3.Init.Parity = UART_PARITY_NONE;
    huart3.Init.Mode = UART_MODE_TX_RX;
    huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart3.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart3);
}

uint32_t Read_VOC_Level(void) {
    uint8_t buffer[32];
    HAL_UART_Receive(&huart3, buffer, 32, HAL_MAX_DELAY);
    uint32_t voc_level = (buffer[2] << 8) | buffer[3];
    return voc_level;
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART3_Init();

    uint32_t voc_level;

    while (1) {
        voc_level = Read_VOC_Level();
        HAL_Delay(1000);
    }
}

4.2 数据处理与控制模块

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。

环境数据处理算法

实现一个简单的环境数据处理算法,根据传感器数据控制风扇和报警器:

#define TEMP_THRESHOLD 30.0
#define HUMIDITY_THRESHOLD 60.0
#define PM25_THRESHOLD 150
#define CO2_THRESHOLD 1000
#define VOC_THRESHOLD 500

void Process_Environment_Data(float temperature, float humidity, uint32_t pm25_level, uint32_t co2_level, uint32_t voc_level) {
    if (temperature > TEMP_THRESHOLD || humidity > HUMIDITY_THRESHOLD || pm25_level > PM25_THRESHOLD || co2_level > CO2_THRESHOLD || voc_level > VOC_THRESHOLD) {
        // 打开风扇和报警器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET); // 风扇
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET); // 报警器
    } else {
        // 关闭风扇和报警器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET); // 风扇
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET); // 报警器
    }
}

void GPIOB_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIOB_Init();
    I2C1_Init();
    UART1_Init();
    UART2_Init();
    UART3_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t pm25_level, co2_level, voc_level;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        pm25_level = Read_PM25_Level();
        co2_level = Read_CO2_Level();
        voc_level = Read_VOC_Level();

        Process_Environment_Data(temperature, humidity, pm25_level, co2_level, voc_level);

        HAL_Delay(1000);
    }
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"

UART_HandleTypeDef huart4;

void UART4_Init(void) {
    huart4.Instance = UART4;
    huart4.Init.BaudRate = 115200;
    huart4.Init.WordLength = UART_WORDLENGTH_8B;
    huart4.Init.StopBits = UART_STOPBITS_1;
    huart4.Init.Parity = UART_PARITY_NONE;
    huart4.Init.Mode = UART_MODE_TX_RX;
    huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart4.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart4);
}

void Send_Environment_Data_To_Server(float temperature, float humidity, uint32_t pm25_level, uint32_t co2_level, uint32_t voc_level) {
    char buffer[128];
    sprintf(buffer, "Temp: %.2f, Humidity: %.2f, PM2.5: %lu, CO2: %lu, VOC: %lu",
            temperature, humidity, pm25_level, co2_level, voc_level);
    HAL_UART_Transmit(&huart4, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART4_Init();
    GPIOB_Init();
    I2C1_Init();
    UART1_Init();
    UART2_Init();
    UART3_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t pm25_level, co2_level, voc_level;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        pm25_level = Read_PM25_Level();
        co2_level = Read_CO2_Level();
        voc_level = Read_VOC_Level();

        Send_Environment_Data_To_Server(temperature, humidity, pm25_level, co2_level, voc_level);

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将环境数据展示在OLED屏幕上:

void Display_Data(float temperature, float humidity, uint32_t pm25_level, uint32_t co2_level, uint32_t voc_level) {
    char buffer[32];
    sprintf(buffer, "Temp: %.2f C", temperature);
    OLED_ShowString(0, 0, buffer);
    sprintf(buffer, "Humidity: %.2f %%", humidity);
    OLED_ShowString(0, 1, buffer);
    sprintf(buffer, "PM2.5: %lu", pm25_level);
    OLED_ShowString(0, 2, buffer);
    sprintf(buffer, "CO2: %lu", co2_level);
    OLED_ShowString(0, 3, buffer);
    sprintf(buffer, "VOC: %lu", voc_level);
    OLED_ShowString(0, 4, buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    Display_Init();
    GPIOB_Init();
    I2C1_Init();
    UART1_Init();
    UART2_Init();
    UART3_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t pm25_level, co2_level, voc_level;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        pm25_level = Read_PM25_Level();
        co2_level = Read_CO2_Level();
        voc_level = Read_VOC_Level();

        // 显示环境数据
        Display_Data(temperature, humidity, pm25_level, co2_level, voc_level);

        HAL_Delay(1000);
    }
}

5. 应用场景:环境监测与管理

室内环境监测

智能环境监测系统可以用于家庭或办公室的室内环境监测,通过实时采集环境数据,实现自动控制,提高室内空气质量。

工业环境监控

在工业环境中,智能环境监测系统可以实现对工厂车间的环境监控,确保工厂的环境安全和员工的健康。

农业环境监测

智能环境监测系统可以用于农业环境监测,通过自动化控制和数据分析,提高农业生产的效率和质量。

智能城市

智能环境监测系统可以用于智能城市建设,通过数据采集和分析,为城市环境管理和优化提供科学依据。

 

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

传感器数据不准确

确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。

环境数据处理不稳定

优化处理算法和硬件配置,减少数据处理的不稳定性,提高系统反应速度。

解决方案:优化处理算法,调整参数,减少振荡和超调。使用高精度传感器,提高数据采集的精度和稳定性。选择更高效的执行器,提高数据处理的响应速度。

数据传输失败

确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。

解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。

显示屏显示异常

检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。

优化建议

数据集成与分析

集成更多类型的传感器数据,使用数据分析技术进行环境状态的预测和优化。

建议:增加更多监测传感器,如噪声传感器、光照传感器等。使用云端平台进行数据分析和存储,提供更全面的环境监测和管理服务。

用户交互优化

改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时环境参数图表、历史记录等。

智能化控制提升

增加智能决策支持系统,根据历史数据和实时数据自动调整环境控制策略,实现更高效的环境管理和控制。

建议:使用数据分析技术分析环境数据,提供个性化的环境管理建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能环境监测系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能环境监测系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1927968.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis的配置优化、数据类型、消息队列

文章目录 一、Redis的配置优化redis主要配置项CONFIG 动态修改配置慢查询持久化RDB模式AOF模式 Redis多实例Redis命令相关 二、Redis数据类型字符串string列表list集合 set有序集合sorted set哈希hash 三、消息队列生产者消费者模式发布者订阅者模式 一、Redis的配置优化 redi…

OSI 七层模型与五层模型

OSI&#xff08;开放系统互连&#xff09;七层模型和五层模型是描述计算机网络协议的两种不同层次划分方法。两者用于帮助理解和设计网络协议&#xff0c;但它们在层次划分上有所不同。

手机数据恢复:适用于 Android 的 4 大数据恢复应用程序

没有人希望丢失设备上的重要数据。如果发生这种情况&#xff0c;请不要惊慌。以下是可帮助您恢复丢失或删除的数据的 Android 数据恢复应用程序列表。 有多种方法可以恢复已删除或丢失的 Android 数据&#xff0c;最简单、最快捷的方法是使用第三方恢复应用程序。这些应用程序会…

Redis 中String类型操作命令(命令演示,时间复杂度,返回值,注意事项)

String 类型 文章目录 String 类型set 命令get 命令mset 命令mget 命令get 和 mget 的区别incr 命令incrby 命令decr 命令decrby 命令incrbyfloat 命令append 命令getrange 命令setrange 命令 字符串类型是 Redis 中最基础的数据类型&#xff0c;在讲解命令之前&#xff0c;我们…

新增支持GIS地图、数据模型引擎升级、增强数据分析处理能力

为了帮助企业提升数据分析处理能力&#xff0c;Smartbi重点围绕产品易用性、用户体验、操作便捷性进行了更新迭代&#xff0c;同时重磅更新了体验中心。用更加匹配项目及业务需求的Smartbi&#xff0c;帮助企业真正发挥数据的价值&#xff0c;赋能决策经营与管理。 Smartbi用户…

昇思25天学习打卡营第7天 | 基于MindSpore的GPT2文本摘要

本次打卡基于gpt2的文本摘要 数据加载及预处理 from mindnlp.utils import http_get# download dataset url https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt path http_get(url, ./)from mindspore.dataset impor…

比华为、特斯拉更大的野心

作者 | 艾泊宇 最近百度自动驾驶的网约车萝卜快跑在武汉大规模上路了。 同样是做自动驾驶&#xff0c;你看百度、华为、特斯拉&#xff0c;他们三家的思路完全不同。 但是可以看出来&#xff0c;各自完全不同的用意和意图&#xff0c;以及格局的高低。 华为很稳&#xff0c;…

BernNet Learning Arbitrary Graph Spectral Filters via Bernstein Approximation

发表于:neurips21 推荐指数: #paper/⭐⭐ 设定:在本文中,h是过滤器. bernstein 多项式逼近(这个证明有点稀里糊涂的,反正我觉得一点点问题,可能因为我水平低) p K ( t ) : ∑ k 0 K θ k ⋅ b k K ( t ) ∑ k 0 K f ( k K ) ⋅ ( K k ) ( 1 − t ) K − k t k . p_K(t):…

太牛了!从来没想到加密软件这么好用

还在为无法保证重要信息安全烦恼吗&#xff1f;金刚钻信息网站&#xff0c;一个集数据防泄密系统、企业数据云盘存储为一身的多个安全产品网站&#xff0c;为企业文件保驾护航&#xff01; 一、全方位防护&#xff0c;无懈可击 数据防泄密系统从电脑内部&#xff0c;电脑外部多…

AV1 编码标准熵编码技术概述

AV1熵编码 AV1编码技术是一种开源的视频编解码标准&#xff0c;由开放媒体联盟&#xff08;AOMedia&#xff09;开发&#xff0c;旨在提供高效的视频压缩&#xff0c;同时避免复杂的专利授权问题。在熵编码方面&#xff0c;AV1采用了一种多符号上下文自适应算术编码技术&#x…

EMR 集群时钟同步问题及解决方案An error occurred (InvalidSignatureException)

目录 1. 问题描述2. 问题原因3. 解决过程4. 时钟同步的重要性5. Linux 系统中的时钟同步方式6. 检查 Linux 系统时钟同步状态7. EMR 集群中的时钟同步配置8. 时钟同步对大数据组件的影响9. 监控和告警策略10. 故障排除和最佳实践11. 自动化时钟同步管理12. 时钟同步与数据一致性…

每日复盘-20240715

20240715 六日涨幅最大: ------1--------300807--------- 天迈科技 五日涨幅最大: ------1--------300807--------- 天迈科技 四日涨幅最大: ------1--------300807--------- 天迈科技 三日涨幅最大: ------1--------300713--------- 英可瑞 二日涨幅最大: ------1--------3007…

AV1技术学习:Translational Motion Compensation

编码块根据运动矢量在参考帧中找到相应的预测块&#xff0c;如下图所示&#xff0c;当前块的左上角的位置为(x0, y0)&#xff0c;在参考帧中找到同样位置(x0, y0)的块&#xff0c;根据运动矢量移动到目标参考块&#xff08;左上角位置为&#xff1a;(x1, y1)&#xff09;。 AV1…

【java】力扣 买卖股票的最佳时机 动态规划

文章目录 题目链接题目描述思路代码 题目链接 121.买卖股票的最佳时机 题目描述 思路 本题主要用到了动态规划 1.先定义dp数组的含义 先定义一个二维数组dp 然后dp[i][0]来表示第i天持有股票的现金 dp[i][1]代表第i天不持有股票的现金 刚开始的现金为0&#xff0c;当第i天买…

mysql索引值

mysql 索引值生成规则 MySQL索引值是如何生成的取决于具体的数据类型和列的具体定义。对于大多数数据类型&#xff0c;MySQL会为索引键值使用原始的数据。对于字符串类型&#xff08;如VARCHAR, CHAR, TEXT&#xff09;&#xff0c;索引键值可能是字符串的前缀&#xff0c;这是…

二.1 信息存储(1.1-1.3)

大多数计算机使用8位的块&#xff0c;或者字节&#xff08;byte&#xff09;&#xff0c;作为最小的可寻址的内存单位&#xff0c;而不是访问内存中单独的位。机器级程序将内存视为一个非常大的字节数组&#xff0c;称为虚拟内存&#xff08;virtual memory&#xff09;。内存的…

Home Assistant在windows环境安装

Home Assistant是什么&#xff1f; Home Assistant 是一个开源的智能家居平台&#xff0c;旨在通过集成各种智能设备和服务&#xff0c;提供一个统一的、可自定义的家庭自动化解决方案。它可以允许用户监控、控制和自动化家中的各种设备&#xff0c;包括灯光、温度、安全系统、…

C语言学生成绩管理系统源程序+设计报告

资料下载地址&#xff1a;C语言学生成绩管理系统源程序设计报告 目录 1.设计目的与要求 2.系统需求分析 3.总体设计 4、运行界面 5、资料清单 1.设计目的与要求 设计目的&#xff1a;学生成绩管理系统是为了在这个信息时代高速发展的今天&#xff0c;通过计算机取代传统…

Python从0到100(三十九):数据提取之正则(文末免费送书)

前言&#xff1a; 零基础学Python&#xff1a;Python从0到100最新最全教程。 想做这件事情很久了&#xff0c;这次我更新了自己所写过的所有博客&#xff0c;汇集成了Python从0到100&#xff0c;共一百节课&#xff0c;帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

加油机税控装置:功能、原理、挑战与发展趋势全解析

加油机税控装置是现代加油机的重要组成部分&#xff0c;它不仅确保销售数据的真实性和合法性&#xff0c;还大大提高了税收管理的效率和质量。 以下是对加油机税控装置的详细解析&#xff1a; 一、功能与作用 1、确保数据真实性&#xff1a;税控装置能够实时、准确地采集加油…