pytorch 是如何调用 cusolver API 的调用

news2024/11/15 13:36:12

0,环境

ubuntu 22.04
pytorch 2.3.1
x86
RTX 3080
cuda 12.2

1, 示例代码

以potrs为例;

hello_cholesk.py


""" 
hello_cholesky.py
step1, Cholesky decompose;
step2, inverse A;
step3, Cholesky again;
python3 hello_cholesky.py --size 256  --cuda_device_id  0
"""
import torch
import time
import argparse


def cholesky_measure(A, cuda_dev=0):
    dev = torch.device(f"cuda:{cuda_dev}")
    A = A.to(dev)

    print(f'Which device to compute : {dev}')
  
    SY = 100* torch.mm(A, A.t()) +  200*torch.eye(N, device=dev)

    to_start = time.time() 
    SY = torch.linalg.cholesky(SY)
    SY = torch.cholesky_inverse(SY)
    SY = torch.linalg.cholesky(SY, upper=True)
    run_time = time.time() - to_start   
     
    print(f'The device: {dev}, run: {run_time:.3f} second')
    print(f'SY : {SY}')
    print(f'****'*20)

    return run_time

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='dim of A.')
    parser.add_argument('--N', type=int, default=512, required=True, help='dim of A')
    args = parser.parse_args()
    N = args.N

    print(f'A N : {N}')    
    A = torch.randn(N, N)
       
    cuda_dev = 0
    time_dev0 = cholesky_measure(A, cuda_dev)    
    time_dev1 = cholesky_measure(A, cuda_dev+1)    
    print(f'time_dev0 /time_dev1 = {time_dev0/time_dev1:.2f} ')

运行效果:

2,调用栈跟踪

跟踪如下调用关系:


Tensor cholesky_inverse(const Tensor &input, bool upper)    aten/src/ATen/native/BatchLinearAlgebra.cpp
	static Tensor& cholesky_inverse_out_info(Tensor& result, Tensor& infos, const Tensor& input, bool upper)
	DECLARE_DISPATCH(cholesky_inverse_fn, cholesky_inverse_stub);
	REGISTER_ARCH_DISPATCH(cholesky_inverse_stub, DEFAULT, &cholesky_inverse_kernel_impl);
	Tensor& cholesky_inverse_kernel_impl(Tensor &result, Tensor& infos, bool upper)
	Tensor& cholesky_inverse_kernel_impl_cusolver(Tensor &result, Tensor& infos, bool upper)
	void _cholesky_inverse_cusolver_potrs_based(Tensor& result, Tensor& infos, bool upper)
	template<typename scalar_t>
	inline static void apply_cholesky_cusolver_potrs(Tensor& self_working_copy, const Tensor& A_column_major_copy, bool upper, Tensor& infos)
	at::cuda::solver::potrs<scalar_t>(
      handle, uplo, n_32, nrhs_32,
      A_ptr + i * A_matrix_stride,
      lda_32,
      self_working_copy_ptr + i * self_matrix_stride,
      ldb_32,
      infos_ptr
    );

一些细节:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1926860.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Django+Vue3 线上教育平台项目实战】构建课程详情页与集成视频播放功能

文章目录 前言一、课程列表页面a.后端代码b.前端代码 二、课程详情页面a. 视频播放功能的集成1.获取上传视频的链接地址2.集成在前端页面中1>使用vue-alipayer视频播放组件2>使用video标签 b. 页面主要内容展示1.后端代码1>分析表2>核心逻辑 2.前端代码3.效果图 前…

网络编程笔记

网络编程 1. 概念 1.1 局域网 局域网&#xff1a;局域网将一定区域的各种计算机、外部设备和数据连接起来形成计算机通信的私有网络 广域网&#xff1a;又称广域网、外网、公网。是连接不同地区局域网或城域网计算机通信的远程公共网络 1.2 IP 本质是一个整形数&#xff…

electron实现右键菜单保存图片功能

1.创建窗口&#xff0c;加载页面&#xff0c;代码如下&#xff1a; //打开窗口const {ipcMain, BrowserWindow} require("electron") const saveImage require("../ipcMain/saveImage") let win null; ipcMain.handle(on-open-event, (event, args) &g…

Oralce笔记-解决Oracle18c中ORA-28001: 口令已经失效

远程已经连不上了&#xff0c;需要登陆到安装Oracle的机器&#xff0c;使用sqlplus直接连。 sqlplus / as sysdba 登陆进去后修改期限为无限制&#xff1a; ALTER PROFILE DEFAULT LIMIT PASSWORD_LIFE_TIME UNLIMITED 对于已经告警提示密码已过期的数据库&#xff0c;需要…

顺序表<数据结构 C 版>

目录 线性表 顺序表 动态顺序表类型 初始化 销毁 打印 检查空间是否充足&#xff08;扩容&#xff09; 尾部插入 头部插入 尾部删除 头部删除 指定位置插入 指定位置删除 查找数据 线性表 线性表是n个相同特性的数据元素组成的有限序列&#xff0c;其是一种广泛运…

vue实现动态图片(gif)

目录 1. 背景 2. 分析 3. 代码实现 1. 背景 最近在项目中发现一个有意思的小需求&#xff0c;鼠标移入一个盒子里&#xff0c;然后盒子里的图就开始动起来&#xff0c;就像一个gif一样&#xff0c;然后鼠标移出&#xff0c;再按照原来的变化变回去&#xff0c;就像变形金刚…

掌握Vue.js:六步打造前端开发高手!

Vue.js&#xff0c;这个在前端开发界熠熠生辉的名字&#xff0c;以其轻巧、高效、易学的特性&#xff0c;成为了众多开发者构建动态交互式网页的首选框架。它不仅简化了前端开发的复杂性&#xff0c;还提供了一套丰富的组件库和工具链&#xff0c;使得开发者能够快速上手并构建…

微软Office PLUS办公插件下载安装指南

微软OfficePLUS插件下载安装指南 简介&#xff1a; OfficePLUS微软官方出品的Office插件 &#xff0c;OfficePLUS拥有30万高质量模板素材&#xff0c;能帮助Word、Excel、Powerpoint、PDF等多种办公软件提升效率&#xff0c;具有智能化、模板质量高、运行快、稳定性强等优点。…

【大语言模型】私有化搭建-企业知识库-知识问答系统

下面是我关于大语言模型学习的一点记录 目录 人工智能学习路线 MaxKB 系统(基于大语言模型的知识问答系统) 部署开源大语言模型LLM 1.CPU模式(没有好的GPU&#xff0c;算力和效果较差) 2.GPU模式&#xff08;需要有NVIDIA显卡支持&#xff09; Ollama网络配置 Ollama前…

docker私有仓库harbor安装

Harbor默认安装 下载harbor https://github.com/goharbor/harbor/releases/download/v2.11.0/harbor-offline-installer-v2.11.0.tgz 目前要求docker版本&#xff0c;docker 20.10.10-ce &#xff0c;和docker-compose 1.18.0 查看 docker-compose版本 docker-compose --ver…

卷积神经网络图像识别车辆类型

卷积神经网络图像识别车辆类型 1、图像 自行车: 汽车: 摩托车: 2、数据集目录 3、流程 1、获取数据,把图像转成矩阵,并随机划分训练集、测试集 2、把标签转为数值,将标签向量转换为二值矩阵 3、图像数据归一化,0-1之间的值 4、构造卷积神经网络 5、设置图像输入…

Mysql数据表的约束(下)

3.默认值约束(default) 与非空约束的命令一致,因为都属于列级约束,因此只需将not null改为default 默认值即可 删除默认值约束: 4.主键约束(primary key) 表示给一张表格设置了一个唯一标识,为了更快的去通过唯一的数据去准确的查找到每一条记录,一半咱们在创建表…

强化学习编程实战-5 基于时间差分的方法

第4章中&#xff0c;当模型未知时&#xff0c;由于状态转移概率P未知&#xff0c;动态规划中值函数的评估方法不再适用&#xff0c;用蒙特卡洛的方法聘雇值函数。 在蒙特卡洛方法评估值函数时&#xff0c;需要采样一整条轨迹&#xff0c;即需要从初始状态s0到终止状态的整个序列…

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(七)-通过无人机实现无线接入的独立部署

引言 本文是3GPP TR 22.829 V17.1.0技术报告&#xff0c;专注于无人机&#xff08;UAV&#xff09;在3GPP系统中的增强支持。文章提出了多个无人机应用场景&#xff0c;分析了相应的能力要求&#xff0c;并建议了新的服务级别要求和关键性能指标&#xff08;KPIs&#xff09;。…

【精品资料】模块化数据中心解决方案(33页PPT)

引言&#xff1a;模块化数据中心解决方案是一种创新的数据中心设计和部署策略&#xff0c;旨在提高数据中心的灵活性、可扩展性和效率。这种方案通过将数据中心的基础设施、计算、存储和网络资源封装到标准化的模块中&#xff0c;实现了快速部署、易于管理和高效运维的目标 方案…

FPGA入门-自用

写代码&#xff0c;并将引脚对应到板子相应的引脚上 下载程序到板子上 遇到错误了&#xff0c;不按想的来的了&#xff0c;进行仿真 查看网表图查看问题所在 简化了一些步骤&#xff1a;未使用引脚的设置&#xff0c;电压设置&#xff1b; 通过画网表结构图来构成电路 时钟 …

Android焦点之SurfaceFlinger的apply

接animate()的openSurfaceTransaction(),prepareSurfaces(),closeSurfaceTransaction() 1. mService.openSurfaceTransaction()&#xff0c;通过SurfaceControl来通知native开始一个Transaction&#xff1b; 2. mService.closeSurfaceTransaction()&#xff0c;通过SurfaceCo…

JVM系列 | 对象的创建与存储

JVM系列 | 对象的生命周期1 对象的创建与存储 文章目录 前言对象的创建过程内存空间的分配方式方式1 | 指针碰撞方式2 | 空闲列表 线程安全问题 | 避免空间冲突的方式方式1 | 同步处理&#xff08;加锁)方式2 | 本地线程分配缓存 对象的内存布局Part1 | 对象头Mark Word类型指针…

如何在Mac上恢复已删除的存档文件?

在本文中&#xff0c;我们将分享在 macOS 或 OS X 上运行的 MacBook、iMac 或 Mac mini 上恢复已删除存档文件的不同方法。 下载免费试用的 Mac 数据恢复软件以在 Mac 上恢复已删除的存档文件。 macOS 可以选择压缩您的文件。您只需选择文件&#xff0c;按住 Control 键单击&a…

实验场:在几分钟内使用 Bedrock Anthropic Models 和 Elasticsearch 进行 RAG 实验

作者&#xff1a;来自 Elastic Joe McElroy, Aditya Tripathi 我们最近发布了 Elasticsearch Playground&#xff0c;这是一个新的低代码界面&#xff0c;开发人员可以通过 A/B 测试 LLM、调整提示&#xff08;prompt&#xff09;和分块数据来迭代和构建生产 RAG 应用程序。今天…