不用训练,集成多个大模型产生更优秀的输出

news2025/4/9 14:29:26

论文标题

Collab: Controlled Decoding using Mixture of Agents for LLM Alignment

论文地址

https://arxiv.org/pdf/2503.21720

作者背景

JP摩根,马里兰大学帕克分校,普林斯顿大学

动机

大模型对齐(alignment)的主要目的是让模型输出更符合人类偏好或者业务需要,当前实现对齐的主流方案是RLHF,但不管是何种具体的实现都需要准备充足的训练数据,来训练调整模型参数,计算成本较大;

在高度专业化或者需要快速定制化的场景中,一般需要更轻量级的方法来实现业务对齐。此时不需要修改模型的受控解码便成为了更有前景的替代方案,它直接在推理阶段对模型的解码行为进行控制,以实现与目标偏好的对齐 。

相关研究表明,受控解码可以显著提高LLM满足特定需求的能力,甚至在某些场景下超过PPO/DPO(https://arxiv.org/pdf/2402.01694)

然而,现有受控解码方法大都针对于单一智能体,这在面对当下越来越多样化、可能有冲突的对齐需求时显得力不从心。例如,一方面我们可能希望模型叙事更严谨,另一方面又希望模型具有丰富的创造性;

尽管有些工作探索了集成多个智能体来应对上述挑战,但现有方法都依赖于弱监督或固定的公式来混合模型输出,缺乏灵活性并且可能需要额外的训练。

于是本文希望在不进行重新训练的情况下,设计一种推理时的动态解码机制,集成多个预训练好的LLMs,以实现最优的对齐效果

本文方法

作者提出Collab(基于混合agent的受控解码,Controlled decoding via mixture of agents),可以在token级别上动态选择最适合当前上下文的智能体来生成下一个词,这里的“智能体”指的就是已经预训练好,并且在特定任务或偏好上做了对齐的LLMs,如下图所示:

在这里插入图片描述

在token级别上选择合适的智能体,是一种奖励信号后置任务,可以使用Q-Learning等强化学习算法来解。为了实现上述“不重新训练”便恰当集成多个智能体的目标,作者从带KL正则项的强化学习(就是一般的RLHF)目标出发,尝试寻找出一个能够利用已知信息来近似Q函数的方法;

先说结论,作者找到的近似方法为:

在这里插入图片描述

其中,Q(s, a)是在上下文状态为s的情况下,候选智能体π_j输出a的奖励期望;π_ref是参考模型,集成的结果不会过于偏离它。也就是说,Collab把【每个候选模型本身的输出概率分布,与参考模型分布的对数差】作为价值估计。更通俗地讲:相比于标准答案,每个“专家”提出的意见便是我们去咨询这个专家所获得的收益

获取到Q函数的估计结果后,便可以通过以下流程实现多LLMs的集成式解码:

  1. 在每个时间步,从每个模型中采样出top_p个token,使用预估的Q函数计算其奖励预期,
  2. 选择Q值最高的token作为当前解码结果,加入到上下文中,作为下一步解码的环境状态
  3. 重复上述过程,知道生成完整的响应

推导过程

一、近似Q函数推导

本节展示上述Q函数的估计过程,以及作者对其误差的估计。首先把问题建模为带KL正则项的强化学习:

在这里插入图片描述

其中参考模型使用的是Zephyr-7B-α、Starling-7B-α 等已经在通用文本任务上进行监督微调或RLHF的开源模型;

然后基于概率归一化条件(ΣΠ(a|s)=1),构造拉格朗日函数:

在这里插入图片描述

对策略概率Π(a|s)求偏导并令其为0,达到极值条件:

在这里插入图片描述

整理得到:

在这里插入图片描述

两边取指数:

在这里插入图片描述

上面等式在Π(s, a)到达极小值时成立,即最优的策略模型,记为Π*;再把与a无关的项看成常数C,则可以解出最优Q函数:

在这里插入图片描述

于是我们就找到了策略模型Π与价值函数Q的对应关系。但此时最优策略模型Π*是未知的,作者直接使用当前智能体Πj来代替Π*

在这里插入图片描述

二、误差估计

使用当前候选智能体模型的分布Πj代替最优分布Π*带来了误差,具体可表示为:

在这里插入图片描述

带入之前推导出来的Q与Π对应关系:

在这里插入图片描述

根据pinsker不等式与KL散度的定义,可推出:

在这里插入图片描述

其中C’为某个有限的常数。也就是说,本文的Q函数估计方法,误差是有界的。如果Π*与Πj的差距不大,则估计的Q与最优的Q也很相近。
也就是说,如果我们的候选智能体本身都比较优秀、都经过了充分的训练与对齐,与目标策略差距不大(本文的动机确实也只是想结合不同的模型避免产生冲突),使用上述对数差来估计路由智能体的奖励是可靠的

实验结果

作者使用了市面上各种开源的,已经完成对齐训练的模型作为实验对象,在多轮对话与道德对齐数据集上进行测试,具体的实验设置如下:

在这里插入图片描述

  • Berkeley Nectar:多轮对话和问答数据集
  • HH-RLHF:数据集对齐数据集

使用GPT-4作为裁判,本文提出的CoLLAB方法相较于对照组(参考上表)以及BoN采样的胜率:

在这里插入图片描述

各对照组(参考上表)与实验组,在测试任务上的奖励分数对比:

在这里插入图片描述

多样性与连贯性对比:

在这里插入图片描述

集成的智能体多样性越强效果越好:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2329734.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

随笔1 认识编译命令

1.认识编译命令 1.1 解释gcc编译命令: gcc test1.cpp -o test1 pkg-config --cflags --libs opencv 命令解析: gcc:GNU C/C 编译器,用于编译C/C代码。 test1.cpp:源代码文件。 -o test1:指定输出的可执行文件名为t…

Hyperlane 框架路由功能详解:静态与动态路由全掌握

Hyperlane 框架路由功能详解:静态与动态路由全掌握 Hyperlane 框架提供了强大而灵活的路由功能,支持静态路由和动态路由两种模式,让开发者能够轻松构建各种复杂的 Web 应用。本文将详细介绍这两种路由的使用方法。 静态路由:简单…

铰链损失函数 Hinge Loss和Keras 实现

一、说明 在为了了解 Keras 深度学习框架的来龙去脉,本文介绍铰链损失函数,然后使用 Keras 实现它们以进行练习并了解它们的行为方式。在这篇博客中,您将首先找到两个损失函数的简要介绍,以确保您在我们继续实现它们之前直观地理解…

瑞数信息发布《BOTS自动化威胁报告》,揭示AI时代网络安全新挑战

近日,瑞数信息正式发布《BOTS自动化威胁报告》,力求通过全景式观察和安全威胁的深度分析,为企业在AI时代下抵御自动化攻击提供安全防护策略,从而降低网络安全事件带来的影响,进一步增强业务韧性和可持续性。 威胁一&am…

FLV格式:流媒体视频的经典选择

FLV格式:流媒体视频的经典选择 FLV(Flash Video)格式曾经是流媒体视频的主力军,在互联网视频的早期时代广泛应用于视频网站和多媒体平台。凭借其高效的压缩和较小的文件体积,FLV成为了许多视频内容创作者和平台的首选…

需求分析-用例图绘制、流程图绘制

第一,引论 需求分析是开发的第一步,也是我个人认为最重要的一步。 技术难题的克服,甚至在我心里,还要排在需求分析后面。 如果需求分析做好了,数据库就更容易建立,数据库建好了,业务逻辑写起…

Windows安装 PHP 8 和mysql9,win下使用phpcustom安装php8.4.5和mysql9

百度搜索官网并下载phpcustom,然后启动环境,点击网站管理 里面就有php8最新版,可以点mysql设置切mysql9最新版,如果你用最新版无法使用,说明你的php程序不支持最新版的mysql MySQL 9.0 引入了一些新的 SQL 模式和语法变…

http://noi.openjudge.cn/_2.5基本算法之搜索_1804:小游戏

文章目录 题目深搜代码宽搜代码深搜数据演示图总结 题目 1804:小游戏 总时间限制: 1000ms 内存限制: 65536kB 描述 一天早上,你起床的时候想:“我编程序这么牛,为什么不能靠这个赚点小钱呢?”因此你决定编写一个小游戏。 游戏在一…

手写JSX实现虚拟DOM

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》、《前端求职突破计划》 🍚 蓝桥云课签约作者、…

Spring Boot 中的 Bean

2025/4/6 向全栈工程师迈进&#xff01; 一、Bean的扫描 在之前&#xff0c;对于Bean的扫描&#xff0c;我们可以在XML文件中书写标签&#xff0c;来指定要扫描的包路径&#xff0c;如下所示,可以实通过如下标签的方式&#xff1a; <context:component-scan base-package&…

ST 芯片架构全景速览:MCU、无线 SoC、BLE 模块、MPU 差异详解

在嵌入式开发中,ST 是一个非常常见的芯片厂商,其产品线覆盖了 MCU、无线芯片、BLE 模块以及运行 Linux 的 MPU 等多个领域。很多开发者初次接触 ST 时会对这些产品之间的关系感到困惑。 本文从分类视角出发,带你快速了解 ST 芯片家族的核心架构和主要用途。 🧭 ST 芯片四…

AtCoder Beginner Contest 400(ABCDE)

A - ABC400 Party 翻译&#xff1a; 在 ABC400 的纪念仪式上&#xff0c;我们想把 400 人排成 A 行 B 列的长方形&#xff0c;且不留任何空隙。 给你一个正整数 A&#xff0c;请打印可以这样排列的正整数 B 的值。如果没有这样的正整数 B&#xff0c;则打印-1。 思路&#xff…

Flask+Vue构建图书管理系统及Echarts组件的使用

教程视频链接从零开始FlaskVue前后端分离图书管理系统 后端 项目下载地址 其中venv为该项目的虚拟环境&#xff0c;已安装所有依赖 使用方法&#xff1a; 在pycharm终端中flask create一下&#xff08;因为写了一个自定义命令的代码&#xff09;&#xff0c;初始化books数据…

【项目管理】第2章 信息技术发展 --知识点整理

Oracle相关文档,希望互相学习,共同进步 风123456789~-CSDN博客 (一)知识总览 对应:第1章-第5章 (二)知识笔记 二、信息技术的发展 1. 信息技术及其发展 1)计算机软硬件 计算机硬件由电子机械、光电元件等组成的物理装置,提供物质基础给计算机软件运行。软件包括程…

4-c语言中的数据类型

一.C 语⾔中的常量 1.生活中的数据 整数&#xff1a; 100,200,300,400,500 小数: 11.11 22.22 33.33 字母&#xff1a; a&#xff0c;b&#xff0c;c&#xff0c;d A&#xff0c;B&#xff0c;C&#xff0c;D 在 C 语⾔中我们把字⺟叫做字符. 字符⽤单引号引⽤。例如A’ 单词…

LORA+llama模型微调全流程

LORAllama.cpp模型微调全流程 准备阶段 1.下载基础大模型 新建一个download.py脚本 from modelscope import snapshot_download#模型存放路径 model_path /root/autodl-tmp #模型名字 name itpossible/Chinese-Mistral-7B-Instruct-v0.1 model_dir snapshot_download(na…

Spring 执行流程(源码)

我们对SpringApplication中的run()方法内部进行一些简单的分析 1. //记录一下程序启动开始的事件&#xff0c;用于之后的统计耗时 long startTime System.nanoTime(); //通过调用SpringApplication的**createBootstrapContext()**方法&#xff0c;创建**bootstrapContext**…

安装完 miniconda3 ,cmd无法执行 conda 命令

提示&#xff1a;安装 miniconda3 文章目录 前言一、安装二、安装完&#xff0c;cmd 无法执行 conda 前言 提示&#xff1a;版本 系统&#xff1a;win10 codna: miniconda3 安装完 miniconda3 &#xff0c;cmd无法执行 conda 命令 提示&#xff1a;以下是本篇文章正文内容&am…

Docker快速安装MongoDB并配置主从同步

目录 一、创建相关目录及授权 二、下载并运行MongoDB容器 三、配置主从复制 四、客户端远程连接 五、验证主从同步 六、停止和恢复复制集 七、常用命令 一、创建相关目录及授权 创建主节点mongodb数据及日志目录并授权 mkdir -p /usr/local/mongodb/mongodb1/data mkdir …

Golang系列 - 内存对齐

Golang系列-内存对齐 常见类型header的size大小内存对齐空结构体类型参考 摘要: 本文将围绕内存对齐展开, 包括字符串、数组、切片等类型header的size大小、内存对齐、空结构体类型的对齐等等内容. 关键词: Golang, 内存对齐, 字符串, 数组, 切片 常见类型header的size大小 首…