数据结构之初始二叉树(1)

news2024/11/15 23:24:28

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页:我要学编程(ಥ_ಥ)-CSDN博客

所属专栏:数据结构(Java版)

目录

树型结构

树的概念 

与树的有关概念

树的表示形式 

树的应用 

二叉树 

概念

两种特殊的二叉树  

二叉树的性质

有关二叉树的性质的练习 

二叉树的存储

二叉树的遍历

二叉树遍历的练习


树型结构

树的概念 

在正式学习二叉树之前,我们先来了解一下:数据结构中什么是树型结构。我们前面学习的顺序表、链表、栈、队列这些都是线性结构的。

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看 起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

左边是大自然中正常的树,右边是数据结构中的树。 

数据结构中的树具有以下的特点:

1、有一个特殊的结点,称为根结点,根结点没有前驱结点。

2、除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <= m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。总结就是一句话:子树与子树之间不能有相交的部分,相交了就不能称之为树了。

3、树是递归定义的。

4、除了根结点外,每个结点有且仅有一个父结点。

5、一棵N个结点的树有N-1条边。

与树的有关概念

重点掌握:

结点的度:一个结点所含的子树的个数,也就是一个节点多少条边。

树的度:因为树有多个结点,因此树结点就是整个树中  所有 结点的度 的最大值。

叶子结点或终端结点:度为0的点,也就是没有边的点。

双亲结点或父结点:若一个结点A含有子结点B,则称该节点A为父结点。

孩子结点或子结点:若一个结点A含有子结点B,则称该节点B为子结点。

根结点:一棵树中,没有 双亲结点 的 结点,就是最上面的那个结点。

结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推。

树的高度或深度:树中结点的最大层次,其实就是从根节点到叶子结点之间的最大值。

了解即可:

非终端结点或分支结点:度不为0的结点。

兄弟结点:具有相同 父结点 的 结点 互称 为兄弟结点。

堂兄弟结点:双亲在同一层的结点,它们的子结点 互为 堂兄结点。

结点的祖先:从根到该结点所经分支上的所有结点,都称为该结点的祖先。

子孙:以某结点为根的子树中任一结点都称为该结点的子孙。

森林:只要是能构成树的结点,就可以称为森林。例如:一颗树有一个节点,那么构成这棵树的这个结点也可以称为森林。

树的表示形式 

树的结构相对线性表就比较复杂了,要存储表示起来就比较麻烦,实际中树有很多种表示方式,如:双亲表示法, 孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。 顾名思义:这个节点中可以储存其孩子和兄弟:

class Node {
    int value; // 树中存储的数据
    Node firstChild; // 第一个孩子引用
    Node nextBrother; // 下一个兄弟引用
}

如下图所示: 

树的应用 

我们电脑的磁盘目录就是用的树这种数据结构。

二叉树 

概念

二叉树是 结点的 一个有限集合,该集合: 1. 要么为空,即没有一个节点 2. 要么是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。就像下面这样:

从上图可以看出:

1. 二叉树不存在度大于2的结点。(结点的度是指一个结点所含的边的条数,也就是子树的个数)

2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。 

对于任意的二叉树都是由以下几种情况复合而成的:

两种特殊的二叉树  

满二叉树:一棵二叉树每层的结点数都达到最大值,则这棵二叉树就是满二叉树,如果一棵 二叉树的层数为K,且结点总数是 2^k -1,则它就是满二叉树。例:

当然这里可能会有一个误区:有小伙伴可能会认为:只要一棵二叉树 只存在度为0 和 度为2 的结点,那么这棵树就是满二叉树。这个观点是不正确的。如下图所示:

完全二叉树:一棵二叉树的所有结点都是从上到下、从左到右依次存在的,这样的二叉树就被称为完全二叉树。例: 

注意:满二叉树也是一种完全二叉树。因为满二叉树也满足完全二叉树的定义。 

二叉树的性质

1. 若规定根结点的层数为1,则一棵非空二叉树第i层上最多有 2^(i-1) (i>0)个结点。例:

2. 若规定只有根结点的二叉树的深度为1(也就是说根是第1层),则深度为K的二叉树的最大结点数是 (2^k) - 1(k>=0) 。这里求的总的结点个数,也可以通过上图看出。其实也就是一个等比数列的求和问题。

3. 具有n个结点的完全二叉树的深度k为 log2 (N+1)(log以2为底,N+1的对数) 向上取整。这个公式就是根据 第2点 反推出来的。下面会有例子证明这个向上取整的意思。

4. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为 i 的结点有:

若 i > 0,双亲(父亲结点)序号:(i-1)/2;i=0,i 为根结点编号,无双亲结点。

若2i+1 < n,则左孩子序号为:2i + 1;2i+1 >= n,则无左孩子。

若2i+2 < n,则右孩子序号为:2i + 2;2i+2 >= n,则无右孩子。

例如:

5. 对于任意一棵二叉树,如果其叶子节点的个数为 n0,度为2的节点个数为 n2 ,则n0 = n2 + 1。即:度为0的结点的个数(叶子结点) 等于 度为2的结点的个数+1 

推导过程如下:

有关二叉树的性质的练习 

1.某二叉树共有399个结点,其中有199个度为2的结点,则该二叉树中的叶子结点数为()
A 不存在这样的二叉树  B 200  C 198  D 199

答案:B

解析:根据前面的结论:叶子结点的个数比度为2的结点的个数多1,可知为200,选B

2.在具有2n个结点的完全二叉树中,叶子结点个数为() 
A n个  B (n+1)个  C (n-1)个  D (n/2)个

答案:A

解析:图解法:

3.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383个  B 384个  C 385个  D 386个

答案:B

解析:由上图可知,叶子结点的个数为 (767+1) / 2 = 384。选B。

4.一棵完全二叉树的节点数为531个,那么这棵树的高度为()
A.11  B.10  C.8  D.12

答案:B

解析:log2 (531+1) > log2 512 = 9,向上取整就是10.

二叉树的存储

二叉树的存储结构分为:顺序存储和类似于链表的链式存储。

顺序存储在后面学习。

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:

// 孩子表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}

// 孩子双亲表示法
class Node {
    int val; // 数据域
    Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
    Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
    Node parent; // 当前节点的根节点
}

孩子双亲表示法后序在平衡树位置介绍,本文采用孩子表示法来构建二叉树。 

二叉树的遍历

二叉树有四种遍历方式:前序遍历、中序遍历、后序遍历、层次遍历。

前序遍历(先序遍历):就是先遍历根结点,再遍历左子树,最后再遍历右子树。

中序遍历:就是先遍历左子树,再遍历根结点,最后再遍历右子树。

后序遍历:就是先遍历左子树,再遍历右子树,最后再遍历根结点。

层序遍历:就是从上到下、从左到右依次遍历根结点。

根据上述概念,我们不难发现遍历根节点的顺序不同,遍历方式也就有了区别。

先遍历根结点就是前序遍历。不管是哪个遍历,一定是左子树在前,右子树在后。

二叉树遍历的练习

1、下面二叉树的四种遍历方式: 

先序遍历:根->左子树->右子树。打印结果:A->B->D->E->C->F->G 

中序遍历:左子树->根->右子树。打印结果:D->B->E->A->F->C->G

后序遍历:左子树->右子树->根。打印结果:D->E->B->F->G->C->A

层序遍历:从上到下、从左到右,依次打印根结点。打印结果:A->B->C->D->E->F->G

根据上面的遍历结果,我们也可以发现一些关于遍历的性质:

1、先序遍历一定会先打印整棵树的根结点,其次再是打印左子树的根节点,依次遍历下去。而后续遍历往往与其相反,最后才打印整棵树的根结点。

2、中序遍历的根结点一定是在中间的,通过后续遍历或者前序遍历确定了根结点之后,在根结点左边的就是根结点的左子树,在根结点右边的就是根结点的右子树。

有了上面这些性质,我们就可以更加迅速的把下面的题目给写完了。

2、某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为()

A: ABDHECFG        B: ABCDEFGH        C: HDBEAFCG        D: HDEBFGCA

答案:A

解析:

由题意知:该树为完全二叉树,因此就可以确定该树的图形如上所示:
前序遍历:A->B->D->H->E->C->F->G

2、二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()

A: E        B: F       C: G       D: H

答案:A

解析:根据先序遍历可以确定整棵树的根结点,即E,又因为中序遍历已知根结点,可以确定整棵树的左子树和右子树,则这棵树的图形如下所示:

3、设一棵二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为()

A: adbce         B: decab         C: debac         D: abcde

答案:D

解析:根据后序遍历可以确定整棵树的根结点,即a,又因为中序遍历已知根结点,可以确定整棵树的左子树和右子树,则这棵树的图形如下所示:

4、某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出(同一层从左到右)的序列为()

A: FEDCBA         B: CBAFED         C: DEFCBA         D: ABCDEF

答案:A

解析:根据后序遍历可以确定整棵树的根结点,即F,又因为中序遍历已知根结点,可以确定整棵树的左子树和右子树,则这棵树的图形如下所示:

好啦!本期 数据结构之初始二叉树(1)的学习之旅就到此结束啦!本期文章主要是了解一些概念与遍历的方式,下一期我们就会开始代码的练习了。我们下一期再一起学习吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925958.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MFC流的形式读取图片

1.基于对话框布置控件 2.给控件绑定变量 3.给按钮控件添加响应函数 void CMFC流的形式读取图片Dlg::OnBnClickedButton1() {// TODO: 在此添加控件通知处理程序代码//HDC mECGDC; // 设备描述表句柄//CPen mECGDrawPen; // ECG波形画笔//RECT mECGRect; // 在该矩形区域内画…

Three.js相机简明教程

相机校准是 3D 计算机图形学中的一个基本概念&#xff0c;涉及设置虚拟相机以模拟真实世界相机的视角和行为。在 Three.js&#xff08;一种流行的 3D 渲染 JavaScript 库&#xff09;中&#xff0c;了解相机校准对于创建逼真且身临其境的 3D 场景至关重要。在本文中&#xff0c…

AIGC是什么,与AI绘画有什么关系,一篇文章带你了解AI绘画的前世今生

在讲解AIGC和AI绘画之前&#xff0c;我们先看看什么是AI以及AI的历史。 AI历史发展轨迹 什么是人工智能 人工智能(Artificial intelligence&#xff0c;简称AI)亦称机器智能&#xff0c;指由人制造出来的机器所表现出来的智能。通常人工智能是指用普通计算机程序来呈现人类智…

ConfigMap-secrets-静态pod

一.ConfigMap 1.概述 ConfigMap资源&#xff0c;简称CM资源&#xff0c;它生成的键值对数据&#xff0c;存储在ETCD数据库中 应用场景&#xff1a;主要是对应用程序的配置 pod通过env变量引入ConfigMap&#xff0c;或者通过数据卷挂载volume的方式引入ConfigMap资源 官方解释…

成为git砖家(1): author 和 committer 的区别

大家好&#xff0c;我是白鱼。一直对 git author 和 committer 不太了解&#xff0c; 今天通过 cherry-pick 的例子搞清楚了区别。 原理 例如我克隆了著名开源项目 spdlog 的源码&#xff0c; 根据某个历史 commit A 创建了分支&#xff0c; 然后 cherry-pick 了这个 commit …

240710_昇思学习打卡-Day22-条件随机场

240710_昇思学习打卡-Day22-条件随机场 在正式开始LSTMCRF序列标注之前&#xff0c;我们先来了解一下条件随机场&#xff0c;以下仅做简单介绍。 CRF全称Conditional Random Field&#xff0c;按照名字来理解&#xff0c;条件随机&#xff0c;随机输入&#xff0c;条件输出。…

vue中父子传递属性值

1、父传子属性值 自定义图库组件 在add.vue中应用tuku组件并给默认值 效果 2、 子传父&#xff0c;逆向赋值 add.vue和第一问中一样 修改tuku组件&#xff0c;传值给add.vue 3、多个传递 效果&#xff1a; 点击两个修改按钮后 4、使用defineModel简化父子传值 其他代码跟…

使用Tkinter库设计实现的中小学校疫情防控入校人员登记检测系统

Tkinter简介 Tkinter是Python标准库中用于GUI图形用户界面开发的工具包&#xff0c;它是基于Tcl/Tk的封装&#xff0c;提供了大量预定义的控件&#xff0c;如按钮、文本框、标签等&#xff0c;非常适合快速原型开发和小型应用的构建。本文将通过一个具体的案例——“中小学校疫…

【java】力扣 合并k个升序链表

文章目录 题目链接题目描述思路代码 题目链接 23.合并k个升序链表 题目描述 给你一个链表数组&#xff0c;每个链表都已经按升序排列。 请你将所有链表合并到一个升序链表中&#xff0c;返回合并后的链表 思路 我在这个题里面用到了PriorityQueue(优先队列) 的知识 Prio…

鸿蒙语言基础类库:【@system.app (应用上下文)】

应用上下文 说明&#xff1a; 从API Version 7 开始&#xff0c;该接口不再维护&#xff0c;推荐使用新接口。本模块首批接口从API version 3开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 导入模块 import app from system.app;app.getInfo …

MFC之对话框--重绘元文件

文章目录 实现示例展示需要绘制的窗口/位置控件位置更新下一次示例粗细滑动部分更新 重绘元文件&#xff08;窗口变化内容消失&#xff09;方法一&#xff1a;使用元文件方法二&#xff1a;兼容设备方法三&#xff1a;使用自定义类存储绘图数据除画笔外功能处理画笔功能处理 保…

【雷达原理】MIMO雷达技术

一、MIMO雷达原理 1.1 基本概念 多输入多输出(Multiple input multiple output&#xff0c;MIMO)雷达指该雷达具有多个发射天线和多个接收天线。 学术界对 MIMO 雷达的定义中&#xff0c;多输入是指同时发射多种雷达信号波形( 一般是多个天线同时发射不同的波形) &#xff0c;…

藏着不为人知的泪水

在娱乐圈的璀璨舞台上&#xff0c;每一个光芒四射的背后&#xff0c;藏着不为人知的汗水与泪水。提及#张艺凡 出道位#&#xff0c;这段历程&#xff0c;不仅仅是个人奋斗的见证&#xff0c;更是关于勇气、坚持与自我证明的壮丽篇章。曾几何时&#xff0c;网络的喧嚣声中&#x…

【信息系统项目管理师】高项常见知识点与公式

绩效域、合同、配置、变更、招投标、安全、立项论文考到的话大致业是按下面相关知识点开写 八大绩效域及其要点 团干部策划开公交 合同管理 合同的签订->合同的履行管理->合同的变更管理->合同的档案管理->合同的违约\索赔管理 配置管理 制定配置管理计划配置识…

欧几里得算法求解若干数的最小公倍数

公倍数 公倍数(common multiple)是指在两个或两个以上的自然数中&#xff0c;如果它们有相同的倍数&#xff0c;这些倍数就是它们的公倍数。公倍数中最小的数&#xff0c;就称为这些整数的最小公倍数&#xff08;lowest common multiple&#xff09; 求解方法 求多个数的最小公…

c++ new 与二级指针

new 与数组的简单用法&#xff0c;一个简单的例子&#xff1a; #include <stdio.h> #include <stdlib.h>#define MAX_ARRAY_NUM 10int main() {int *p new int[MAX_ARRAY_NUM];for(int i 0; i < MAX_ARRAY_NUM; i){p[i] i 10;}for(int i 0; i < MAX_AR…

MAVSDK动态库与静态库及mavsdk_server程序macOS平台编译与安装

1.克隆mavsdk: git clone https://github.com/mavlink/MAVSDK.git --recursive 2.编译静态库 cmake -Bbuild/default -H. -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF 生成makefile 生成成功,开始编译 cmake --build build/default -j8 成功生成libmavsdk.a 开…

BUCK电源芯片,电气参数,极限参数,工作特性,引脚功能

概述 在应用DC-DC开关电源芯片时&#xff0c;通常需要关注以下参数&#xff0c;同步与非同步&#xff0c;输入电压&#xff0c;输入电流&#xff0c;输出电压&#xff0c;输出电流&#xff0c;输入输出电容的选择&#xff1b;mosfet选型&#xff0c;电感选型&#xff0c;功耗&a…

python作业三

1.使用requests模块获取这个json文件http://java-api.super-yx.com/html/hello.json 2.将获取到的json转为dict 3.将dict保存为hello.json文件 4.用io流写一个copy(src,dst)函数,复制hello.json到C:\hello.json import json import shutilimport requests #使用requests模块获…

RPC与服务的注册发现

文章目录 1. 什么是远程过程调用(RPC)?2. RPC的流程3. RPC实践4. RPC与REST的区别4.1 RPC与REST的相似之处4.2 RPC与REST的架构原则4.3 RPC与REST的主要区别 5. RPC与服务发现5.1 以zookeeper为服务注册中心5.2 以etcd为服务注册中心 6. 小结参考 1. 什么是远程过程调用(RPC)?…