MATLAB激光通信和-积消息传递算法(Python图形模型算法)模拟调制

news2025/1/11 6:10:38

🎯要点

🎯概率论和图论数学形式和图结构 | 🎯数学形式、图结构和代码验证贝叶斯分类器算法:🖊多类型:朴素贝叶斯,求和朴素贝叶斯、高斯朴素贝叶斯、树增强贝叶斯、贝叶斯网络增强贝叶斯和半朴素贝叶斯 | 🖊多维型:贝叶斯链 | 🖊分层型:贝叶斯网络和链式分类器复合式 | 🖊数学形式、图结构和代码验证贝叶斯分类器算法 | 🎯数学形式、图结构和代码验证隐马尔可夫模型算法 | 🎯数学形式、图结构和代码验证马尔可夫随机场模型算法 | 🎯数学形式、图结构和代码验证贝叶斯网络算法:🖊学习树和有向无环图:Chow-Liu 算法、PC 算法 | 🎯数学形式、图结构和代码验证马尔可夫决策过程算法

🎯算法实现: 🖊结构学习算法:爬坡搜索、树搜索、最大-最小爬坡,穷举搜索 | 🖊参数学习算法:最大似然、贝叶斯估计器、期望最大化 | 🖊概率推理算法:变量消除、置信传播、最大乘积线性规划、取样方式 | 🖊因果推理算法:执行操作、调整套

🎯GPU多线程并行概率模型 | 🎯激光通信和-积消息传递算法模拟调制

📜Python和R和MATLAB图形模型用例

📜Python | R | MATLAB群体消息和遗传病筛选多元统计模型

📜Python神经模型评估微分方程图算法

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python图挖掘潜在关系

PC 算法利用对撞机和有向无环图的原理来挖掘潜在的前后关系,从而快速消除数据集中的不相关链接。然而,由此产生的因果图通常是完整的部分有向无环图,其特点是边缘方向不确定,而不是确定的有向无环图。

在我的方法中,我使用 PC 算法生成一个图,然后利用 NetworkX 的 is_directedis_directed_acyclic_graph 函数来确定该图是否符合有向无环图的条件。通常情况下,我们不会直接获得有向无环图。为了解决不确定的边,我们可以依靠人工干预或先验知识,尽管这需要额外的努力。

探索从酒类数据集开始,包含 178 个条目和 15 个不同的特征,如酒精、苹果酸和类黄酮。

import utils, pc_algorithm, random, copy, statistics
import pandas as pd
import numpy as np
import networkx as nx
from itertools import product
from pgmpy.estimators import BicScore

data = utils.get_data_from_ucirepo(109)
data.info()

labels = data.columns.tolist()
data = np.array(data)

我使用自定义 PC 算法生成完整的部分有向无环图。

graph, sepetated_set = pc_algorithm.pc_get_graph(data)
cpdag_graph = pc_algorithm.pc_apply_rules(graph, sepetated_set)

然后使用 NetworkX 的有向图将完整的部分有向无环图转换为网络图。在此表示中,方向未确定的边标记为红色,突出显示图从完整的部分有向无环图到非有向无环图状态的转变。

network_graph = nx.DiGraph(cpdag_graph)
pos = nx.kamada_kawai_layout(network_graph)
print("Is Directed?: " + str(nx.is_directed(network_graph)))
print("Is DAG?: " + str(nx.is_directed_acyclic_graph(network_graph)))
undirected_edges = {frozenset(i) for i in network_graph.edges() if network_graph.has_edge(*i[::-1])}
edge_colors = ["red" if frozenset(edge) in undirected_edges else "gray" for edge in network_graph.edges()]

nx.draw(network_graph, pos,
        edge_color = edge_colors,
        width=1,
        linewidths = 1,
        node_size = 600,
        font_size = 6,
        node_color="pink",
        alpha=0.9,
        labels=dict(zip(range(len(labels)), labels)))

在这里插入图片描述
当此类边的数量可控时,我们可以从完整的部分有向无环图中枚举所有可能的有向无环图。在本例中,从 128 个潜在配置中,出现了 60 个有效的 有向无环图。

possible_edges = list(product([0, 1], repeat = len(undirected_edges)))
print("All posiible graphs: " + str(len(possible_edges)))

dags = []

for i in possible_edges:
    
    network = nx.DiGraph(cpdag_graph)
    
    for j, k in enumerate(i):
        
        l = [*list(undirected_edges)[j]][0]
        m = [*list(undirected_edges)[j]][1]
        
        network.remove_edge(l, m)
        network.remove_edge(m , l)
        
        if k == 0:
            network.add_edge(l, m)
        else:
            network.add_edge(m , l)
    
    if nx.is_directed_acyclic_graph(network):
        
        dags.append(network)

print("All DAGs: " + str(len(dags))

下一步是确定这些可能性中最适合的有向无环图。这是使用贝叶斯信息准则实现的,该准则使用 pgmpy 的 BicScore 计算。BIC 得分最低的有向无环图可能是我们数据集底层因果结构的最准确表示。

bic_calculator = BicScore(pd.DataFrame(data))
bics = [bic_calculator.score(i) for i in dags]

nx.draw(dags[bics.index(min(bics))], pos,
        edge_color = edge_colors,
        width=1,
        linewidths = 1,
        node_size = 600,
        font_size = 6,
        node_color = "pink",
        alpha=0.9,
        labels=dict(zip(range(len(labels)), labels)))

通过这一探索,我们展示了如何将 PC 算法与 NetworkX 结合起来有效地识别复杂数据集中的潜在前后关系。

👉参阅&更新:计算思维 | 亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925238.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android12 MultiMedia框架之GenericSource extractor

前面两节学习到了各种Source的创建和extractor service的启动,本节将以本地播放为例记录下GenericSource是如何创建一个extractor的。extractor是在PrepareAsync()方法中被创建出来的,为了不过多赘述,我们直接从GenericSource的onPrepareAsyn…

LeetCode刷题笔记第3011题:判断一个数组是否可以变为有序

LeetCode刷题笔记第3011题:判断一个数组是否可以变为有序 题目: 想法: 使用冒泡排序进行排序,在判断大小条件时加入判断二进制下数位为1的数目是否相同,相同则可以进行互换。最后遍历数组,相邻两两之间是…

17集 如何用ESP-IDF编译ESP-DL深度学习工程-《MCU嵌入式AI开发笔记》

17集 如何用ESP-IDF编译ESP-DL深度学习工程-《MCU嵌入式AI开发笔记》 参考文档:ESP-DL 用户指南: https://docs.espressif.com/projects/esp-dl/zh_CN/latest/esp32/index.html 和https://docs.espressif.com/projects/esp-dl/zh_CN/latest/esp32/get-s…

Qt Mqtt客户端 + Emqx

环境 Qt 5.14.2 qtmqtt mqttx 功能 QT Mqtt客户端 qtmqtt 下载 qtmqtt (注意下载与QT版本相符的库)并使用QT 编译 编译完成后需要的文件: emqx 1.虚拟机中安装emqx,并启动 curl -s https://assets.emqx.com/scripts/install-emqx-deb.sh | sudo bash sudo apt-get inst…

Java实现数据结构——双链表

目录 一、前言 二、实现 2.1 类的创建 三、对链表操作实现 3.1 打印链表 3.2 插入数据 3.2.1 申请新节点 3.2.2 头插 ​编辑 3.2.3 尾插 3.2.4 链表长度 3.2.5 任意位置插入 3.3 删除数据 3.3.1 头删 3.3.2 尾删 3.3.3 删除指定位置数据 3.3.4 删除指定数据 3…

王道计算机考研数据结构思维导图笔记(持续更新)

第1章 绪论 1.1 数据结构的基本概念 1.1.1 基本概念和术语 1.1.1 数据结构三要素 1.2 算法和算法评价 1.2.1算法的基本概念 1.2.2 算法效率的度量 第2章 线性表 2.1 线性表的定义和基本操作 2.1.1 线性表的定义 2.1.2 线性表的基本操作 2.2.1 顺序表上的定义 2.2.2 顺序…

Power Apps使用oData访问表数据并赋值前端

在使用OData查询语法通过Xrm.WebApi.retrieveMultipleRecords方法过滤数据时,你可以指定一个OData $filter 参数来限制返回的记录集。 以下是一个使用Xrm.WebApi.retrieveMultipleRecords方法成功的例子,它使用了OData $filter 参数来查询实体的记录&am…

期货交易记录20240714

文章目录 期货交易系统构建步骤一、选品二、心态历练三、何时开仓3.1、开仓纪律3.2、开仓时机3.3、开仓小技巧 四、持仓纪律五、接下来的计划 2024年7月15号,期货交易第6篇记录。这一篇文中主要记录下,根据交易保证金筛选品种。 交易记录:目…

internet download manager(IDM下载器) 6.42.8.2下载安装使用指南

internet download manager(IDM下载器) 6.42.8.2Z是一款功能强大的下载加速工具,能够显著提升您的下载速度,最高可达500%。它不仅能够加速下载,还能对下载任务进行智能调度,并具备恢复中断下载的能力。根据用户评价,无…

6.S081的Lab学习——Lab10: mmap

文章目录 前言mmap(hard)提示:解析 总结 前言 一个本硕双非的小菜鸡,备战24年秋招。打算尝试6.S081,将它的Lab逐一实现,并记录期间心酸历程。 代码下载 官方网站:6.S081官方网站 安装方式: 通过 APT 安装…

Re:从零开始的C++世界——(一)入门基础

文章目录 C发展历史1.命名空间1.1 namespace的价值1.2 namespace的定义1.3 命名空间使⽤ 2.C输⼊&输出3.缺省参数3.1 缺省参数的概念3.2 缺省参数的分类 4.函数重载5.引⽤5.1引⽤的概念和定义5.2 引⽤的特性5.3 const引⽤5.4 使用场景5.5 指针和引⽤的关系 6.内联函数6.1内…

RDNet实战:使用RDNet实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

从零开始做题:迷失幻境

题目 给出一个磁盘虚拟文件 解题 下载附件然后解压,得到一个虚拟机文件,使用的是DiskGenius磁盘工具打开 这样他里面的文件就全部展现出来了 我们可以看到有很多图片,和一个txt文档,还有几个没有后缀的文件,图片这么多,所以我…

自动驾驶中的人机互相接管问题讨论

一、背景 人机接管(human takeover)是指在自动驾驶过程中,当系统遇到超出其处理能力或预设安全阈值的情况时,将控制权交还给驾驶员的过程。这一环节的设计直接关系到自动驾驶技术的实用性与安全性,是目前研究和实践中…

idea启动ssm项目详细教程

前言 今天碰到一个ssm的上古项目,项目没有使用内置的tomcat作为服务器容器,这个时候就需要自己单独设置tomcat容器。这让我想起了我刚入行时被外置tomcat配置支配的恐惧。现在我打算记录一下配置的过程,希望对后面的小伙伴有所帮助吧。 要求…

计算机视觉之Vision Transformer图像分类

Vision Transformer(ViT)简介 自注意结构模型的发展,特别是Transformer模型的出现,极大推动了自然语言处理模型的发展。Transformers的计算效率和可扩展性使其能够训练具有超过100B参数的规模空前的模型。ViT是自然语言处理和计算…

第零章 HCIA复习

目录 HCIA复习 一、OSI七层模型 二、TCP/UDP协议 传输层协议 TCP/IP协议簇 封装/解封装 模型区别 协议号和类型字段 类型字段 协议号 UDP协议头部: TCP协议头部: IP报文参数: 三、DHCP协议 定义 PC端初次获取IP地址 交换机转…

Linux vim的使用(一键安装则好用的插件_forcpp),gcc的常见编译链接操作

vim 在Linux系统上vim是个功能还比较完善的软件。但是没装插件的vim用着还是挺难受的,所以我们直接上一款插件。 我们只需要在Linux上执行这个命令就能安装(bite提供的) curl -sLf https://gitee.com/HGtz2222/VimForCpp/raw/master/install.sh -o ./install.sh …

基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 基于1-bit DAC的非线性预编码背景 4.2 ZF(Zero-Forcing) 4.3 WF(Water-Filling) 4.3 MRT(Maximum Ratio Transmission&…

昇思25天学习打卡营第09天|保存与加载

在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。 import numpy as np import mindspore from mindspore import nn fr…