卷积神经网络-猫狗识别实战

news2025/1/7 22:45:37

课程来自bilibili@Momodel平台 全长只有两个小时,理论部分讲得很粗糙

1 人的视觉和计算机视觉

人的大脑:神经元细胞,轴突发送信号,树突接收信号,互相连接,连接的强度和状态会随着新的经历刺激而变化。

用计算机模拟大脑,每个神经元的输入有很多,有很多权重,经过激活函数,输出一个值。

全连接网络:略

计算机图像的一些基础概念:略

图像-flatten(二维展开成一维)->全连接网络

2 神经网络介绍

人工设计神经网络(结构);参数是学习训练出来的。需要数据和相应标签。
与真实值的偏差是损失。使得损失最小的算法:梯度下降,反向传播。

3 卷积神经网络

处理图像时,全连接网络的第一层将会非常大,如100*100*3的图片,有1000个神经元,会有3e7的连接,这样就太大了。
在这里插入图片描述

卷积层->最大池化层(多次)-flatten>全连接网络

模式1比整张图片要小;2模式可能出现在图像的不同区域。如“猫耳检测器”,可以复用;3对图像进行缩小并不会改变图像,而可以使得参数大量减少。

1.2属性导致了卷积层的存在。不同的卷积核有不同的效果,如边缘检测、锐化等。

边界可以padding。full padding:卷积结果比原图片大,对任何一个像素都不放过。same padding:卷积结果与原图片一样大。
在这里插入图片描述

Stride:卷积核每次移动的步长。
在这里插入图片描述
彩色图片:三通道,处理后相加。

3属性导致了池化层的存在。起到了图像缩小的效果。
在这里插入图片描述
逐步抽象。
在这里插入图片描述

框架 Keras

是一个用python编写的高级神经网络API
在这里插入图片描述
Keras现在已经被收入tensorflow里了

方式1
Sequenttial序列模型
非常简单,只支持单输入,单输出(适合猫狗识别)

方式2
函数式API
支持多输入多输出
在这里插入图片描述

import keras
from keras import layers #层

model=keras.Sequential() #建立序列模型
model.add(layers.Dense(20,activation='relu',input_shape=(10,))) #加层,Dense表示全连接层
#参数是神经元数量、激活函数,输入的参数值数量
model.add(layers.Dense(20,activation='relu'))
model.add(layers.Dense(10,activation='softmax'))

#训练,x表示样本数据,y表示标签,epochs即训练迭代次数,batch_size是一批的大小
model.fit(x,y,epochs=10,batch_size=32)

#Conv2D 创造卷积核
#参数,filters=输出空间的维度,kernel_size:卷积核的宽高,strides=步长,padding选择valid或same
keras.layers.Conv2D(filters,kernel_size,strides=(1,1),padding='valid',data_format=None)

#MaxPooling2D 池化层
#参数,pool_size缩小比例的因数,strides,padding
keras.layers.MaxPooling2D(pool_size=(2,2),strides=None,padding='valid',data_format=None)

导入数据集

从momodel里直接导入

导包

import sys
from matplotlib import pyplot
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

基础CNN模型

在这里插入图片描述

def define_cnn_model():
    model=Sequential() #建立序列模型
    #卷积层
    model.add(Conv2D(32,(3,3),activation='relu',padding='same',input_shape=(200,200,3)))
    #最大池化层
    model.add(MaxPooling2D((2,2)))
    #Flatten层
    model.add(Flatten())
    #全连接层
    model.add(Dense(128,activation='relu',))
    model.add(Dense(1,activation='sigmoid'))
    
    #编译模型 优化器
    opt=SGD(lr=0.001,momentum=0.9)
    model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['accuracy'])
    return model

打印模型结构

model=define_cnn_model()
plot_model(model,to_file='cnn_model.png',dpi=100,show_shapes=True,show_layer_names=True)

在这里插入图片描述

def train_cnn_model():
    model=define_cnn_model()
    #图片生成器
    datagen=ImageDataGenerator(rescale=1.0/255.0)
    train_it=datagen.flow_from_directory(
        '/home/jovyan/work/datasets/ma1ogo3ushu4ju4ji2-momodel/dogs_cats/data/train',
        class_mode='binary',
        batch_size=64,
        target_size=(200,200)
    )
    #训练模型
    model.fit_generator(train_it,
                       steps_per_epoch=len(train_it),
                       epochs=1,
                       verbose=1)

使用gpu添加任务进行训练

train_cnn_model()

epochs=1时结果为58%的准确率
在这里插入图片描述
epochs=20时,准确率达到了92.8%
在这里插入图片描述

预测

from keras.models import load_model
model_path='/home/jovyan/work/datasets/ma1ogo3ushu4ju4ji2-momodel/dogs_cats/model/basic_cnn_model.h5'
model=load_model(model_path)

import os,random
from matplotlib.pyplot import imshow
import numpy as np
from PIL import Image
%matplotlib inline

def read_random_image():
    folder='/home/jovyan/work/datasets/ma1ogo3ushu4ju4ji2-momodel/dogs_cats/data/test/'
    file_path=folder+random.choice(os.listdir(folder))
    pil_im=Image.open(file_path,'r')
    return pil_im

def get_predict(pil_im,model):
    pil_im=pil_im.resize((200,200))#对图片缩放
    array_im=np.asarray(pil_im)
    array_im = array_im[np.newaxis,:]
    result=model.predict([[array_im]])
    if result[0][0]>0.5:
        print('狗')
    else:
        print('猫')
      
pil_im=read_random_image()
imshow(np.asarray(pil_im))
get_predict(pil_im,model)

预测结果:
在这里插入图片描述

迁移学习

是一种机器学习方法,把为A任务开发的模型拿出来复用。即使用预训练的模型。
在这里插入图片描述
基于inceptionV3模型做迁移学习
在这里插入图片描述
include_top=是否包括推理部分
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1924122.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

尚硅谷Vue3入门到实战,最新版vue3+TypeScript前端开发教程

Vue3 编码规范 创建vue3工程 基于vite创建 快速上手 | Vue.js (vuejs.org) npm create vuelatest 在nodejs环境下运行进行创建 按提示进行创建 用vscode打开项目 安装依赖 源文件有src 内有main.ts App.vue 简单分析 编写src vue2语法在三中适用 vue2中的date metho…

C++基础知识:冒泡排序(利用C++实现冒泡排序)

1.冒泡排序的作用: 最常用也是简单的排序算法,对数组内元素进行排序 2.冒泡排序的具体步骤: 1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。 2.对每一对相邻元素做同样的工作,执行完毕后,找到第一个最大值…

关于思维和智能体模型的思考(2)

在关于思维和智能体模型的思考(1)一文中,我们提出了思维和Agent 模型,提出了使用确定连接的智能体构建的思维模型。本文我们继续讨论思维与智能体,重点探讨另一种智能体-自主智能体,并且提出了自主智能体的…

《黑马点评》Redis高并发项目实战笔记【完结】P1~P72

花费4周敲完《黑马点评》的课程,做了详细的笔记,感觉受益匪浅,一直一直都在不停成长着。 突然想起《苍穹外卖》系列至今已收获200个赞,500个收藏,好评颇多,私信我的人不计其数,在此谢谢大家。 …

从零开始学习PX4源码3(如何上传官网源码到自己的仓库中)

目录 文章目录 目录摘要1.将PX4源码上传至腾讯工蜂2.从腾讯工蜂克隆源码到本地ubuntu3.如何查看自己源码的版本信息 摘要 本节主要记录从零开始学习PX4源码3(如何上传官网源码到自己的仓库中)及如何查看PX4的固件版本信息,欢迎批评指正! PX4源码版本V1.…

东软“引战”国家队 通用技术“补链”大国重器

向来低调温和的东软创始人刘积仁,这一次抛出了“王炸”级的资产交易。 7月3日,《多肽链》获得一则足以引爆国内医疗设备行业的投资信息:被东软集团视为核心资产、掌上明珠的东软医疗,成功引入通用技术集团资本有限公司与中国国有…

240713_昇思学习打卡-Day25-LSTM+CRF序列标注(4)

240713_昇思学习打卡-Day25-LSTMCRF序列标注(4) 最后一天咯,做第四部分。 BiLSTMCRF模型 在实现CRF后,我们设计一个双向LSTMCRF的模型来进行命名实体识别任务的训练。模型结构如下: nn.Embedding -> nn.LSTM -&…

前端练习小项目——方向感应名片

前言:在学习完HTML和CSS之后,我们就可以开始做一些小项目了,本篇文章所讲的小项目为——方向感应名片 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以访问我的主页秋刀鱼不做梦-CSDN博客 在开始学习之前,先让我们看一…

C++客户端Qt开发——开发环境

一、QT开发环境 1.安装三个部分 ①C编译器(gcc,cl.exe……) ②QT SDK SDK-->软件开发工具包 比如,windows版本QT SDK里已经内置了C的编译器(内置编译器是mingw,windows版本的gcc/g) ③QT的集成开发…

KnoBo:医书学习知识,辅助图像分析,解决分布外性能下降和可解释性问题

KnoBo:从医书中学习知识,辅助图像分析,解决分布外性能下降问题 提出背景KnoBo 流程图KnoBo 详解问题构成结构先验瓶颈预测器参数先验 解法拆解逻辑链对比 CLIP、Med-CLIPCLIPMed-CLIPKnoBo 训练细节预训练过程OpenCLIP的微调 构建医学语料库文…

说说执行一条查询SQL语句时,期间发生了什么?

执行一条查询SQL语句时,期间发生了什么? 前言说说执行一条查询SQL语句时,发生了什么?连接器权限验证断开连接长连接 查询缓存查询缓存的问题 解析器词法分析语法分析 执行 SQL预处理器优化器执行器主键索引查询全表扫描索引下推 总…

轻薄鼠标的硬核选购攻略,很多人都在“高性价比”鼠标上栽跟头了

轻薄款设计的鼠标是目前鼠标市场的出货大头, 也是价格最卷的一类鼠标。 比游戏鼠标或许更卷一些。 这和当前的移动办公趋势关系很大。 这类鼠标主要跟笔记本和iPad搭配。 核心的使用场景是办公。 因此轻薄和静音是这类鼠标的核心卖点。 同时用户并不愿意付出太…

代码随想录算法训练营第三十二天|1049.最后一块石头的重量II、494.目标和、474.一和零

1049.最后一块石头的重量II 有一堆石头&#xff0c;每块石头的重量都是正整数。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎。假设石头的重量分别为 x 和 y&#xff0c;且 x < y。那么粉碎的可能结果如下&#xff1a; 如果 x y&#xff0c;那…

期货交易记录20240713

文章目录 期货交易系统构建步骤一、选品二、心态历练三、何时开仓3.1、开仓纪律3.2、开仓时机3.3、开仓小技巧 四、持仓纪律五、接下来的计划 2024年7月13号&#xff0c;期货交易第5篇记录。 交易记录&#xff1a;半个月多没记录了&#xff0c;这段时间分别尝试做了菜粕、棕榈油…

9.6 栅格图层符号化唯一值着色渲染

文章目录 前言多波段彩色渲染唯一值着色QGis设置为唯一值着色二次开发代码实现唯一值着色 总结 前言 介绍栅格图层数据渲染之唯一值着色渲染说明&#xff1a;文章中的示例代码均来自开源项目qgis_cpp_api_apps 多波段彩色渲染唯一值着色 以“with_color_table.tif”数据为例…

【嵌入式DIY实例-ESP8266篇】-LCD ST7789显示DS1307 RTC时间数据

LCD ST7789显示DS1307 RTC时间数据 文章目录 LCD ST7789显示DS1307 RTC时间数据1、硬件准备与接线2、代码实现本文将介绍如何使用 ESP8266 NodeMCU 板和 DS1307 RTC 集成电路构建简单的实时时钟和日历 (RTCC),其中时间和日期打印在 ST7789 TFT 显示模块上。 ST7789 TFT 模块包…

Open-TeleVision——通过VR沉浸式感受人形机器人视野:兼备远程控制和深度感知能力

前言 7.3日&#xff0c;我司七月在线(集AI大模型职教、应用开发、机器人解决方案为一体的科技公司)的「大模型机器人(具身智能)线下营」群里的一学员发了《Open-TeleVision: Teleoperation with Immersive Active Visual Feedback》这篇论文的链接&#xff0c;我当时快速看了一…

UML/SysML建模工具更新情况(2024年7月)(1)

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 工具最新版本&#xff1a;Enterprise Architect 17.0 BETA 更新时间&#xff1a;2024年7月2日 工具简介 性价比很高&#xff0c;目前最流行的UML建模工具。还包含需求管理、项目估算…

AIGC专栏13——ComfyUI 插件编写细节解析-以EasyAnimateV3为例

AIGC专栏13——ComfyUI 插件编写细节解析-以EasyAnimateV3为例 学习前言什么是ComfyUI相关地址汇总ComfyUIEasyAnimateV3 节点例子复杂例子-以EasyAnimateV3为例节点文件必要库的导入载入模型节点定义Image to Video节点定义节点名称映射 __init__.py文件插件导入comfyUI 学习前…

被动的机器人非线性MPC控制

MPC是一种基于数学模型的控制策略&#xff0c;它通过预测系统在未来一段时间内的行为&#xff0c;并求解优化问题来确定当前的控制输入&#xff0c;以实现期望的控制目标。对于非线性系统&#xff0c;MPC可以采用非线性模型进行预测和优化&#xff0c;这种方法被称为非线性模型…