elasticsearch源码分析-04集群状态发布

news2025/1/11 4:09:14

集群状态发布

cluster模块封装了在集群层面执行的任务,如集群健康、集群级元信息管理、分片分配给节点、节点管理等。集群任务执行之后可能会产生新的集群状态,如果产生新的集群状态主节点会将集群状态广播给其他节点。

集群状态封装在clusterState中,支持增量同步

提交集群任务的主要时机有以下几种:

  • 索引的创建、删除、打开、关闭
  • 索引模板、映射、别名的变化
  • gateway模块发布选举出来的集群状态
  • 快照
  • 分片分配
  • 集群节点变化等

提交集群任务入口在ClusterService的submitStateUpdateTask方法,第一个参数是事件来源,第二个参数是要执行的具体任务

public <T extends ClusterStateTaskConfig & ClusterStateTaskExecutor<T> & ClusterStateTaskListener>
        void submitStateUpdateTask(String source, T updateTask) {
        submitStateUpdateTask(source, updateTask, updateTask, updateTask, updateTask);
    }
    
public <T> void submitStateUpdateTask(String source, T task,
                                          ClusterStateTaskConfig config,
                                          ClusterStateTaskExecutor<T> executor,
                                          ClusterStateTaskListener listener) {
        submitStateUpdateTasks(source, Collections.singletonMap(task, listener), config, executor);
    }

public <T> void submitStateUpdateTasks(final String source,
                                           final Map<T, ClusterStateTaskListener> tasks, final ClusterStateTaskConfig config,
                                           final ClusterStateTaskExecutor<T> executor) {
        masterService.submitStateUpdateTasks(source, tasks, config, executor);
    }

最有代表性的任务是ClusterStateUpdateTask,它实现了ClusterStateTaskConfig、ClusterStateTaskExecutor

public abstract class ClusterStateUpdateTask
        implements ClusterStateTaskConfig, ClusterStateTaskExecutor<ClusterStateUpdateTask>, ClusterStateTaskListener {

在这里插入图片描述
ClusterStateTaskConfig包含了任务的配置信息和优先级

TimeValue timeout();
Priority priority();

ClusterStateTaskExecutor主要是定义要执行的任务,最主要的方法就是execute方法

 ClusterTasksResult<T> execute(ClusterState currentState, List<T> tasks) throws Exception;

任务执行时会传入当前集群状态,任务运行过程中如果产生新的集群状态就返回新的集群状态,如果没有就返回原来的集群状态

ClusterStateTaskListener主要是提交任务后的回调处理

/**
     * A callback called when execute fails.
     */
    void onFailure(String source, Exception e);

    /**
     * called when the task was rejected because the local node is no longer master.
     * Used only for tasks submitted to {@link MasterService}.
     */
    default void onNoLongerMaster(String source) {
        onFailure(source, new NotMasterException("no longer master. source: [" + source + "]"));
    }

    /**
     * Called when the result of the {@link ClusterStateTaskExecutor#execute(ClusterState, List)} have been processed
     * properly by all listeners.
     */
    default void clusterStateProcessed(String source, ClusterState oldState, ClusterState newState) {
    }

MasterService主要负责集群任务管理和运行,只有主节点会提交集群任务到内部队列,并运行队列中的任务

public <T> void submitStateUpdateTasks(final String source,
                                           final Map<T, ClusterStateTaskListener> tasks, final ClusterStateTaskConfig config,
                                           final ClusterStateTaskExecutor<T> executor) {
        if (!lifecycle.started()) {
            return;
        }
        final ThreadContext threadContext = threadPool.getThreadContext();
        final Supplier<ThreadContext.StoredContext> supplier = threadContext.newRestorableContext(true);
        try (ThreadContext.StoredContext ignore = threadContext.stashContext()) {
            threadContext.markAsSystemContext();
            //封装任务
            List<Batcher.UpdateTask> safeTasks = tasks.entrySet().stream()
                .map(e -> taskBatcher.new UpdateTask(config.priority(), source, e.getKey(), safe(e.getValue(), supplier), executor))
                .collect(Collectors.toList());
            //提交任务
            taskBatcher.submitTasks(safeTasks, config.timeout());
        } catch (EsRejectedExecutionException e) {
            // ignore cases where we are shutting down..., there is really nothing interesting
            // to be done here...
            if (!lifecycle.stoppedOrClosed()) {
                throw e;
            }
        }
    }
public void submitTasks(List<? extends BatchedTask> tasks, @Nullable TimeValue timeout) throws EsRejectedExecutionException {
        if (tasks.isEmpty()) {
            return;
        }
        final BatchedTask firstTask = tasks.get(0);
        assert tasks.stream().allMatch(t -> t.batchingKey == firstTask.batchingKey) :
            "tasks submitted in a batch should share the same batching key: " + tasks;
        // convert to an identity map to check for dups based on task identity
        //根据任务标识检查重复数据
        final Map<Object, BatchedTask> tasksIdentity = tasks.stream().collect(Collectors.toMap(
            BatchedTask::getTask,
            Function.identity(),
            (a, b) -> { throw new IllegalStateException("cannot add duplicate task: " + a); },
            IdentityHashMap::new));

        synchronized (tasksPerBatchingKey) {
            //添加相同batchingKey的任务,返回已存在batchingKey的任务
            LinkedHashSet<BatchedTask> existingTasks = tasksPerBatchingKey.computeIfAbsent(firstTask.batchingKey,
                k -> new LinkedHashSet<>(tasks.size()));
            //检查是否存在相同batchingKey的任务
            for (BatchedTask existing : existingTasks) {
                // check that there won't be two tasks with the same identity for the same batching key
                BatchedTask duplicateTask = tasksIdentity.get(existing.getTask());
                if (duplicateTask != null) {
                    throw new IllegalStateException("task [" + duplicateTask.describeTasks(
                        Collections.singletonList(existing)) + "] with source [" + duplicateTask.source + "] is already queued");
                }
            }
            existingTasks.addAll(tasks);
        }
        //执行任务
        if (timeout != null) {
            threadExecutor.execute(firstTask, timeout, () -> onTimeoutInternal(tasks, timeout));
        } else {
            threadExecutor.execute(firstTask);
        }
    }

这里有去重逻辑,拥有相同ClusterStateTaskExecutor对象实例的任务只会执行一次,然后对于其他相同的实例直接赋值相同的执行结果。区分重复任务的方式时通过定义的任务本身,去重的方式不是将重复的数据删除,而是在执行完任务后赋予重复任务相同的结果。

ClusterStateTaskExecutor相同有两种情况可能是提交的任务本身重复,还有就是之前提交的任务已存在,但是尚未执行此时提交相同的任务就会保存到对应的列表中,只会执行一次

任务会被封装到UpdateTask中

class UpdateTask extends BatchedTask {
            final ClusterStateTaskListener listener;

            UpdateTask(Priority priority, String source, Object task, ClusterStateTaskListener listener,
                       ClusterStateTaskExecutor<?> executor) {
                super(priority, source, executor, task);
                this.listener = listener;
            }

            @Override
            public String describeTasks(List<? extends BatchedTask> tasks) {
                return ((ClusterStateTaskExecutor<Object>) batchingKey).describeTasks(
                    tasks.stream().map(BatchedTask::getTask).collect(Collectors.toList()));
            }
        }

提交到线程池运行调用run方法

@Override
public void run() {
    //运行还没处理的任务
    runIfNotProcessed(this);
}
void runIfNotProcessed(BatchedTask updateTask) {
        //具有相同batching key的任务只会执行一次
        if (updateTask.processed.get() == false) {
            final List<BatchedTask> toExecute = new ArrayList<>();
            final Map<String, List<BatchedTask>> processTasksBySource = new HashMap<>();
            synchronized (tasksPerBatchingKey) {
                //获取任务列表
                LinkedHashSet<BatchedTask> pending = tasksPerBatchingKey.remove(updateTask.batchingKey);
                if (pending != null) {
                    for (BatchedTask task : pending) {
                        if (task.processed.getAndSet(true) == false) {
                            logger.trace("will process {}", task);
                            //构建要执行的任务列表
                            toExecute.add(task);
                            processTasksBySource.computeIfAbsent(task.source, s -> new ArrayList<>()).add(task);
                        } else {
                            logger.trace("skipping {}, already processed", task);
                        }
                    }
                }
            }

            if (toExecute.isEmpty() == false) {
                final String tasksSummary = processTasksBySource.entrySet().stream().map(entry -> {
                    String tasks = updateTask.describeTasks(entry.getValue());
                    return tasks.isEmpty() ? entry.getKey() : entry.getKey() + "[" + tasks + "]";
                }).reduce((s1, s2) -> s1 + ", " + s2).orElse("");
                //执行任务
                run(updateTask.batchingKey, toExecute, tasksSummary);
            }
        }
    }

执行任务并发布集群状态的逻辑在MasterService中

@Override
        protected void run(Object batchingKey, List<? extends BatchedTask> tasks, String tasksSummary) {
            ClusterStateTaskExecutor<Object> taskExecutor = (ClusterStateTaskExecutor<Object>) batchingKey;
            List<UpdateTask> updateTasks = (List<UpdateTask>) tasks;
            //运行任务,并发布集群状态
            runTasks(new TaskInputs(taskExecutor, updateTasks, tasksSummary));
        }
private void runTasks(TaskInputs taskInputs) {
        final String summary = taskInputs.summary;
        if (!lifecycle.started()) {
            logger.debug("processing [{}]: ignoring, master service not started", summary);
            return;
        }

        logger.debug("executing cluster state update for [{}]", summary);
        //之前集群状态
        final ClusterState previousClusterState = state();
        //只在主节点执行
        if (!previousClusterState.nodes().isLocalNodeElectedMaster() && taskInputs.runOnlyWhenMaster()) {
            logger.debug("failing [{}]: local node is no longer master", summary);
            taskInputs.onNoLongerMaster();
            return;
        }

        final long computationStartTime = threadPool.relativeTimeInMillis();
        //执行task任务生成新的集群状态
        final TaskOutputs taskOutputs = calculateTaskOutputs(taskInputs, previousClusterState);
        taskOutputs.notifyFailedTasks();
        final TimeValue computationTime = getTimeSince(computationStartTime);
        logExecutionTime(computationTime, "compute cluster state update", summary);

        if (taskOutputs.clusterStateUnchanged()) {
            final long notificationStartTime = threadPool.relativeTimeInMillis();
            taskOutputs.notifySuccessfulTasksOnUnchangedClusterState();
            final TimeValue executionTime = getTimeSince(notificationStartTime);
            logExecutionTime(executionTime, "notify listeners on unchanged cluster state", summary);
        } else {//集群状态发生改变
            final ClusterState newClusterState = taskOutputs.newClusterState;
            if (logger.isTraceEnabled()) {
                logger.trace("cluster state updated, source [{}]\n{}", summary, newClusterState);
            } else {
                logger.debug("cluster state updated, version [{}], source [{}]", newClusterState.version(), summary);
            }
            final long publicationStartTime = threadPool.relativeTimeInMillis();
            try {
                ClusterChangedEvent clusterChangedEvent = new ClusterChangedEvent(summary, newClusterState, previousClusterState);
                // new cluster state, notify all listeners
                final DiscoveryNodes.Delta nodesDelta = clusterChangedEvent.nodesDelta();
                if (nodesDelta.hasChanges() && logger.isInfoEnabled()) {
                    String nodesDeltaSummary = nodesDelta.shortSummary();
                    if (nodesDeltaSummary.length() > 0) {
                        logger.info("{}, term: {}, version: {}, delta: {}",
                            summary, newClusterState.term(), newClusterState.version(), nodesDeltaSummary);
                    }
                }

                logger.debug("publishing cluster state version [{}]", newClusterState.version());
                //发布集群状态
                publish(clusterChangedEvent, taskOutputs, publicationStartTime);
            } catch (Exception e) {
                handleException(summary, publicationStartTime, newClusterState, e);
            }
        }
    }

执行方法前判断是不是主节点因为只有主节点可以运行集群任务,根据执行任务前的集群状态执行任务生成新的集群状态

执行任务获取任务执行结果,并生成新的集群状态

private TaskOutputs calculateTaskOutputs(TaskInputs taskInputs, ClusterState previousClusterState) {
        //执行提交的任务,并且返回新的集群状态
        ClusterTasksResult<Object> clusterTasksResult = executeTasks(taskInputs, previousClusterState);
        //根据分配分片结果生成新的集群状态
        ClusterState newClusterState = patchVersions(previousClusterState, clusterTasksResult);
        return new TaskOutputs(taskInputs, previousClusterState, newClusterState, getNonFailedTasks(taskInputs, clusterTasksResult),
            clusterTasksResult.executionResults);
    }

获取任务列表,调用executor的execute方法

private ClusterTasksResult<Object> executeTasks(TaskInputs taskInputs, ClusterState previousClusterState) {
        ClusterTasksResult<Object> clusterTasksResult;
        try {
            List<Object> inputs = taskInputs.updateTasks.stream().map(tUpdateTask -> tUpdateTask.task).collect(Collectors.toList());
            //执行任务,并返回新的集群状态
            clusterTasksResult = taskInputs.executor.execute(previousClusterState, inputs);
            if (previousClusterState != clusterTasksResult.resultingState &&
                previousClusterState.nodes().isLocalNodeElectedMaster() &&
                (clusterTasksResult.resultingState.nodes().isLocalNodeElectedMaster() == false)) {
                throw new AssertionError("update task submitted to MasterService cannot remove master");
            }
        } catch (Exception e) {
           ......
               clusterTasksResult = ClusterTasksResult.builder()
                .failures(taskInputs.updateTasks.stream().map(updateTask -> updateTask.task)::iterator, e)
                .build(previousClusterState);
        }
        ......
        return clusterTasksResult;
    }

这里我们以gateway恢复集群状态为例

ClusterTasksResult<T> execute(ClusterState currentState, List<T> tasks) throws Exception;
@Override
    public final ClusterTasksResult<ClusterStateUpdateTask> execute(ClusterState currentState, List<ClusterStateUpdateTask> tasks)
            throws Exception {
        //执行集群状态变更task,并且返回执行之后的集群状态结果
        ClusterState result = execute(currentState);
        return ClusterTasksResult.<ClusterStateUpdateTask>builder().successes(tasks).build(result);
    }

		@Override
        public void onSuccess(final ClusterState recoveredState) {
            logger.trace("successful state recovery, importing cluster state...");
            clusterService.submitStateUpdateTask("local-gateway-elected-state",
                new RecoverStateUpdateTask() {
                @Override
                public ClusterState execute(final ClusterState currentState) {
                    final ClusterState updatedState = ClusterStateUpdaters.mixCurrentStateAndRecoveredState(currentState, recoveredState);
                    return super.execute(ClusterStateUpdaters.recoverClusterBlocks(updatedState));
                }
            });
        }

@Override
        public ClusterState execute(final ClusterState currentState) {
            if (currentState.blocks().hasGlobalBlock(STATE_NOT_RECOVERED_BLOCK) == false) {
                logger.debug("cluster is already recovered");
                return currentState;
            }
            //状态信息恢复完成
            final ClusterState newState = Function.<ClusterState>identity()
                    .andThen(ClusterStateUpdaters::updateRoutingTable)
                    .andThen(ClusterStateUpdaters::removeStateNotRecoveredBlock)
                    .apply(currentState);
            //开始分配分片
            return allocationService.reroute(newState, "state recovered");
        }

生成新的集群状态,开始分配分片,根据之前的集群状态和新生成的结果构造新的集群状态

private ClusterState patchVersions(ClusterState previousClusterState, ClusterTasksResult<?> executionResult) {
        //新的集群状态
        ClusterState newClusterState = executionResult.resultingState;

        if (previousClusterState != newClusterState) {
            // only the master controls the version numbers
            //生成新的集群状态版本号,递增的
            Builder builder = incrementVersion(newClusterState);
            //路由表发生了改变,也就是分片信息发送了改变,分片-node
            if (previousClusterState.routingTable() != newClusterState.routingTable()) {
                builder.routingTable(RoutingTable.builder(newClusterState.routingTable())
                    .version(newClusterState.routingTable().version() + 1).build());
            }
            //集群元数据发生了改变
            if (previousClusterState.metadata() != newClusterState.metadata()) {
                builder.metadata(Metadata.builder(newClusterState.metadata()).version(newClusterState.metadata().version() + 1));
            }

            newClusterState = builder.build();
        }

        return newClusterState;
    }

回到MasterService的runTasks方法中新的集群状态已经生成并返回,然后判断集群状态和之前的集群状态是否相同,如果发生变化则将进入集群状态发布阶段,将最新的集群状态广播到所有节点

//发布集群状态
publish(clusterChangedEvent, taskOutputs, publicationStartTime);
protected void publish(ClusterChangedEvent clusterChangedEvent, TaskOutputs taskOutputs, long startTimeMillis) {
        final PlainActionFuture<Void> fut = new PlainActionFuture<Void>() {
            @Override
            protected boolean blockingAllowed() {
                return isMasterUpdateThread() || super.blockingAllowed();
            }
        };
        //发布集群状态
        clusterStatePublisher.publish(clusterChangedEvent, fut, taskOutputs.createAckListener(threadPool, clusterChangedEvent.state()));

        // indefinitely wait for publication to complete
        //无限期等待发布完成
        try {
            FutureUtils.get(fut);
            onPublicationSuccess(clusterChangedEvent, taskOutputs);
        } catch (Exception e) {
            onPublicationFailed(clusterChangedEvent, taskOutputs, startTimeMillis, e);
        }
    }
@Override
    public void publish(ClusterChangedEvent clusterChangedEvent, ActionListener<Void> publishListener, AckListener ackListener) {
        //新的集群状态
        ClusterState newState = clusterChangedEvent.state();
        assert newState.getNodes().isLocalNodeElectedMaster() : "Shouldn't publish state when not master " + clusterChangedEvent.source();

        try {

            // state got changed locally (maybe because another master published to us)
            if (clusterChangedEvent.previousState() != this.committedState.get()) {
                throw new FailedToCommitClusterStateException("state was mutated while calculating new CS update");
            }

            pendingStatesQueue.addPending(newState);
            //发布集群状态
            publishClusterState.publish(clusterChangedEvent, electMaster.minimumMasterNodes(), ackListener);
        } catch (FailedToCommitClusterStateException t) {
            // cluster service logs a WARN message
            logger.debug("failed to publish cluster state version [{}] (not enough nodes acknowledged, min master nodes [{}])",
                newState.version(), electMaster.minimumMasterNodes());

            synchronized (stateMutex) {
                pendingStatesQueue.failAllStatesAndClear(
                    new ElasticsearchException("failed to publish cluster state"));

                rejoin("zen-disco-failed-to-publish");
            }

            publishListener.onFailure(t);
            return;
        }

        final DiscoveryNode localNode = newState.getNodes().getLocalNode();
        final AtomicBoolean processedOrFailed = new AtomicBoolean();
        pendingStatesQueue.markAsCommitted(newState.stateUUID(),
            new PendingClusterStatesQueue.StateProcessedListener() {
                @Override
                public void onNewClusterStateProcessed() {
                    processedOrFailed.set(true);
                    publishListener.onResponse(null);
                    ackListener.onNodeAck(localNode, null);
                }

                @Override
                public void onNewClusterStateFailed(Exception e) {
                    processedOrFailed.set(true);
                    publishListener.onFailure(e);
                    ackListener.onNodeAck(localNode, e);
                    logger.warn(() -> new ParameterizedMessage(
                            "failed while applying cluster state locally [{}]", clusterChangedEvent.source()), e);
                }
            });

        synchronized (stateMutex) {
            if (clusterChangedEvent.previousState() != this.committedState.get()) {
                publishListener.onFailure(
                        new FailedToCommitClusterStateException("local state was mutated while CS update was published to other nodes")
                );
                return;
            }
            //经过二阶段提交状态已经发布到了集群,但不能保证所有节点都成功了,下面处理提交后的集群状态
            boolean sentToApplier = processNextCommittedClusterState("master " + newState.nodes().getMasterNode() +
                " committed version [" + newState.version() + "] source [" + clusterChangedEvent.source() + "]");
            if (sentToApplier == false && processedOrFailed.get() == false) {
                assert false : "cluster state published locally neither processed nor failed: " + newState;
                logger.warn("cluster state with version [{}] that is published locally has neither been processed nor failed",
                    newState.version());
                publishListener.onFailure(new FailedToCommitClusterStateException("cluster state that is published locally has neither " +
                        "been processed nor failed"));
            }
        }
    }

首先准备发送集群状态的目标节点列表,剔除本节点。构建增量发布或全量发布集群状态,然后执行序列化并压缩,以便将状态发布出去

public void publish(final ClusterChangedEvent clusterChangedEvent, final int minMasterNodes,
                        final Discovery.AckListener ackListener) throws FailedToCommitClusterStateException {
        final DiscoveryNodes nodes;
        final SendingController sendingController;
        final Set<DiscoveryNode> nodesToPublishTo;
        final Map<Version, BytesReference> serializedStates;
        final Map<Version, BytesReference> serializedDiffs;
        final boolean sendFullVersion;
        try {
            //需要发送目的节点
            nodes = clusterChangedEvent.state().nodes();
            nodesToPublishTo = new HashSet<>(nodes.getSize());
            DiscoveryNode localNode = nodes.getLocalNode();
            final int totalMasterNodes = nodes.getMasterNodes().size();
            for (final DiscoveryNode node : nodes) {
                if (node.equals(localNode) == false) {
                    nodesToPublishTo.add(node);
                }
            }
            sendFullVersion = !discoverySettings.getPublishDiff() || clusterChangedEvent.previousState() == null;
            //全量状态
            serializedStates = new HashMap<>();
            //增量状态
            serializedDiffs = new HashMap<>();

            // we build these early as a best effort not to commit in the case of error.
            // sadly this is not water tight as it may that a failed diff based publishing to a node
            // will cause a full serialization based on an older version, which may fail after the
            // change has been committed.
            //构建序列化后的结果
            buildDiffAndSerializeStates(clusterChangedEvent.state(), clusterChangedEvent.previousState(),
                    nodesToPublishTo, sendFullVersion, serializedStates, serializedDiffs);
            //发布状态返回结果处理
            final BlockingClusterStatePublishResponseHandler publishResponseHandler =
                new AckClusterStatePublishResponseHandler(nodesToPublishTo, ackListener);
            sendingController = new SendingController(clusterChangedEvent.state(), minMasterNodes,
                totalMasterNodes, publishResponseHandler);
        } catch (Exception e) {
            throw new FailedToCommitClusterStateException("unexpected error while preparing to publish", e);
        }

        try {
            //发布
            innerPublish(clusterChangedEvent, nodesToPublishTo, sendingController, ackListener, sendFullVersion, serializedStates,
                serializedDiffs);
        } catch (FailedToCommitClusterStateException t) {
            throw t;
        } catch (Exception e) {
            // try to fail committing, in cause it's still on going
            if (sendingController.markAsFailed("unexpected error", e)) {
                // signal the change should be rejected
                throw new FailedToCommitClusterStateException("unexpected error", e);
            } else {
                throw e;
            }
        }
    }

全量状态保存在serializedStates,增量状态保存在serializedDiffs。每个集群状态都有自己为一个版本好,在发布集群状态时允许相邻版本好之间只发送增量内容

构造需要发送的状态,如果上次发布集群状态的节点不存在或设置了全量发送配置,则构建全量状态否则构建增量状态然后进行序列化并压缩

private void buildDiffAndSerializeStates(ClusterState clusterState, ClusterState previousState, Set<DiscoveryNode> nodesToPublishTo,
                                             boolean sendFullVersion, Map<Version, BytesReference> serializedStates,
                                             Map<Version, BytesReference> serializedDiffs) {
        Diff<ClusterState> diff = null;
        for (final DiscoveryNode node : nodesToPublishTo) {
            try {
                //发送全量
                if (sendFullVersion || !previousState.nodes().nodeExists(node)) {
                    // will send a full reference
                    if (serializedStates.containsKey(node.getVersion()) == false) {
                        serializedStates.put(node.getVersion(), serializeFullClusterState(clusterState, node.getVersion()));
                    }
                } else {
                    //发送增量
                    // will send a diff
                    if (diff == null) {
                        diff = clusterState.diff(previousState);
                    }
                    if (serializedDiffs.containsKey(node.getVersion()) == false) {
                        serializedDiffs.put(node.getVersion(), serializeDiffClusterState(diff, node.getVersion()));
                    }
                }
            } catch (IOException e) {
                throw new ElasticsearchException("failed to serialize cluster_state for publishing to node {}", e, node);
            }
        }
    }

es使用二阶段提交来实现状态发布,第一步是push及先将状态数据发送到node节点,但不应用,如果得到超过半数的节点的返回确认,则执行第二步commit及发送提交请求,二阶段提交不能保证节点收到commit请求后可以正确应用,也就是它只能保证发了commit请求,但是无法保证单个节点上的状态应用是成功还是失败的

  • push阶段发送集群状态数据
private void innerPublish(final ClusterChangedEvent clusterChangedEvent, final Set<DiscoveryNode> nodesToPublishTo,
                              final SendingController sendingController, final Discovery.AckListener ackListener,
                              final boolean sendFullVersion, final Map<Version, BytesReference> serializedStates,
                              final Map<Version, BytesReference> serializedDiffs) {

        final ClusterState clusterState = clusterChangedEvent.state();
        final ClusterState previousState = clusterChangedEvent.previousState();
        //发布超时时间
        final TimeValue publishTimeout = discoverySettings.getPublishTimeout();
        //发布起始时间
        final long publishingStartInNanos = System.nanoTime();
        //遍历节点异步发送全量或增量状态数据
        for (final DiscoveryNode node : nodesToPublishTo) {
            // try and serialize the cluster state once (or per version), so we don't serialize it
            // per node when we send it over the wire, compress it while we are at it...
            // we don't send full version if node didn't exist in the previous version of cluster state
            //发生全量状态
            if (sendFullVersion || !previousState.nodes().nodeExists(node)) {
                sendFullClusterState(clusterState, serializedStates, node, publishTimeout, sendingController);
            } else {
                //发布增量状态
                sendClusterStateDiff(clusterState, serializedDiffs, serializedStates, node, publishTimeout, sendingController);
            }
        }
        //等待提交,等待第一阶段完成收到足够的响应或达到了超时时间
        sendingController.waitForCommit(discoverySettings.getCommitTimeout());

        final long commitTime = System.nanoTime() - publishingStartInNanos;

        ackListener.onCommit(TimeValue.timeValueNanos(commitTime));

        try {
            long timeLeftInNanos = Math.max(0, publishTimeout.nanos() - commitTime);
            final BlockingClusterStatePublishResponseHandler publishResponseHandler = sendingController.getPublishResponseHandler();
            sendingController.setPublishingTimedOut(!publishResponseHandler.awaitAllNodes(TimeValue.timeValueNanos(timeLeftInNanos)));
            if (sendingController.getPublishingTimedOut()) {
                DiscoveryNode[] pendingNodes = publishResponseHandler.pendingNodes();
                // everyone may have just responded
                if (pendingNodes.length > 0) {
                    logger.warn("timed out waiting for all nodes to process published state [{}] (timeout [{}], pending nodes: {})",
                        clusterState.version(), publishTimeout, pendingNodes);
                }
            }
            // The failure is logged under debug when a sending failed. we now log a summary.
            Set<DiscoveryNode> failedNodes = publishResponseHandler.getFailedNodes();
            if (failedNodes.isEmpty() == false) {
                logger.warn("publishing cluster state with version [{}] failed for the following nodes: [{}]",
                    clusterChangedEvent.state().version(), failedNodes);
            }
        } catch (InterruptedException e) {
            // ignore & restore interrupt
            Thread.currentThread().interrupt();
        }
    }

无论是发送全量数据还是发送增量数据最终都会调用到sendClusterStateToNode方法

private void sendClusterStateToNode(final ClusterState clusterState, BytesReference bytes,
                                        final DiscoveryNode node,
                                        final TimeValue publishTimeout,
                                        final SendingController sendingController,
                                        final boolean sendDiffs, final Map<Version, BytesReference> serializedStates) {
        try {
            //调用底层的传输层发送
            transportService.sendRequest(node, SEND_ACTION_NAME,
                    new BytesTransportRequest(bytes, node.getVersion()),
                    stateRequestOptions,
                    new EmptyTransportResponseHandler(ThreadPool.Names.SAME) {

                        @Override
                        public void handleResponse(TransportResponse.Empty response) {
                            //发布超时
                            if (sendingController.getPublishingTimedOut()) {
                                logger.debug("node {} responded for cluster state [{}] (took longer than [{}])", node,
                                    clusterState.version(), publishTimeout);
                            }
                            //检查收到的响应是否过半,然后执行commit
                            sendingController.onNodeSendAck(node);
                        }

                        @Override
                        public void handleException(TransportException exp) {
                            if (sendDiffs && exp.unwrapCause() instanceof IncompatibleClusterStateVersionException) {
                                logger.debug("resending full cluster state to node {} reason {}", node, exp.getDetailedMessage());
                                sendFullClusterState(clusterState, serializedStates, node, publishTimeout, sendingController);
                            } else {
                                logger.debug(() -> new ParameterizedMessage("failed to send cluster state to {}", node), exp);
                                sendingController.onNodeSendFailed(node, exp);
                            }
                        }
                    });
        } catch (Exception e) {
            logger.warn(() -> new ParameterizedMessage("error sending cluster state to {}", node), e);
            sendingController.onNodeSendFailed(node, e);
        }
    }

调用transportService的sendRequest方法异步发送数据,rpc请求为internal:discovery/zen/publish/send对应节点注册的处理器为SendClusterStateRequestHandler

//发送处理
        transportService.registerRequestHandler(SEND_ACTION_NAME, ThreadPool.Names.SAME, false, false, BytesTransportRequest::new,
            new SendClusterStateRequestHandler());

private class SendClusterStateRequestHandler implements TransportRequestHandler<BytesTransportRequest> {

        @Override
        public void messageReceived(BytesTransportRequest request, final TransportChannel channel, Task task) throws Exception {
            //处理状态变更请求
            handleIncomingClusterStateRequest(request, channel);
        }
    }

protected void handleIncomingClusterStateRequest(BytesTransportRequest request, TransportChannel channel) throws IOException {
        Compressor compressor = CompressorFactory.compressor(request.bytes());
        StreamInput in = request.bytes().streamInput();
        final ClusterState incomingState;
        synchronized (lastSeenClusterStateMutex) {
            try {
                if (compressor != null) {
                    in = compressor.streamInput(in);
                }
                in = new NamedWriteableAwareStreamInput(in, namedWriteableRegistry);
                in.setVersion(request.version());
                // If true we received full cluster state - otherwise diffs
                //true:全量状态,false:增量
                if (in.readBoolean()) {
                    incomingState = ClusterState.readFrom(in, transportService.getLocalNode());
                    fullClusterStateReceivedCount.incrementAndGet();
                    logger.debug("received full cluster state version [{}] with size [{}]", incomingState.version(),
                        request.bytes().length());
                } else if (lastSeenClusterState != null) {
                    Diff<ClusterState> diff = ClusterState.readDiffFrom(in, lastSeenClusterState.nodes().getLocalNode());
                    incomingState = diff.apply(lastSeenClusterState);
                    compatibleClusterStateDiffReceivedCount.incrementAndGet();
                    logger.debug("received diff cluster state version [{}] with uuid [{}], diff size [{}]",
                        incomingState.version(), incomingState.stateUUID(), request.bytes().length());
                } else {
                    logger.debug("received diff for but don't have any local cluster state - requesting full state");
                    throw new IncompatibleClusterStateVersionException("have no local cluster state");
                }
            } catch (IncompatibleClusterStateVersionException e) {
                incompatibleClusterStateDiffReceivedCount.incrementAndGet();
                throw e;
            } catch (Exception e) {
                logger.warn("unexpected error while deserializing an incoming cluster state", e);
                throw e;
            } finally {
                IOUtils.close(in);
            }
            //触发监听器
            incomingClusterStateListener.onIncomingClusterState(incomingState);
            lastSeenClusterState = incomingState;
        }
        //发送发回空结果
        channel.sendResponse(TransportResponse.Empty.INSTANCE);
    }

保存集群状态,然后返回空结果

继续回到主节点发送数据的回调函数中,检查响应是否足够

public synchronized void onNodeSendAck(DiscoveryNode node) {
            if (committed) {//提交状态
                assert sendAckedBeforeCommit.isEmpty();
                sendCommitToNode(node, clusterState, this);
            } else if (committedOrFailed()) {
                logger.trace("ignoring ack from [{}] for cluster state version [{}]. already failed", node, clusterState.version());
            } else {
                // we're still waiting
                sendAckedBeforeCommit.add(node);
                if (node.isMasterNode()) {
                    checkForCommitOrFailIfNoPending(node);
                }
            }
        }

  //检查返回ack的节点数,如果超过了半数就执行commit
        private synchronized void checkForCommitOrFailIfNoPending(DiscoveryNode masterNode) {
            logger.trace("master node {} acked cluster state version [{}]. processing ... (current pending [{}], needed [{}])",
                    masterNode, clusterState.version(), pendingMasterNodes, neededMastersToCommit);
            neededMastersToCommit--;
            if (neededMastersToCommit == 0) {
                if (markAsCommitted()) {
                    for (DiscoveryNode nodeToCommit : sendAckedBeforeCommit) {
                        sendCommitToNode(nodeToCommit, clusterState, this);
                    }
                    sendAckedBeforeCommit.clear();
                }
            }
            decrementPendingMasterAcksAndChangeForFailure();
        }
  • commit阶段

接收到了足够的响应后开始执行commit逻辑

private void sendCommitToNode(final DiscoveryNode node, final ClusterState clusterState, final SendingController sendingController) {
        try {
            logger.trace("sending commit for cluster state (uuid: [{}], version [{}]) to [{}]",
                clusterState.stateUUID(), clusterState.version(), node);
            transportService.sendRequest(node, COMMIT_ACTION_NAME,
                    new CommitClusterStateRequest(clusterState.stateUUID()),
                    stateRequestOptions,
                    new EmptyTransportResponseHandler(ThreadPool.Names.SAME) {

                        @Override
                        public void handleResponse(TransportResponse.Empty response) {
                            if (sendingController.getPublishingTimedOut()) {
                                logger.debug("node {} responded to cluster state commit [{}]", node, clusterState.version());
                            }
                            sendingController.getPublishResponseHandler().onResponse(node);
                        }

                        @Override
                        public void handleException(TransportException exp) {
                            logger.debug(() -> new ParameterizedMessage("failed to commit cluster state (uuid [{}], version [{}]) to {}",
                                    clusterState.stateUUID(), clusterState.version(), node), exp);
                            sendingController.getPublishResponseHandler().onFailure(node, exp);
                        }
                    });
        } catch (Exception t) {
            logger.warn(() -> new ParameterizedMessage("error sending cluster state commit (uuid [{}], version [{}]) to {}",
                    clusterState.stateUUID(), clusterState.version(), node), t);
            sendingController.getPublishResponseHandler().onFailure(node, t);
        }
    }

同样通过transportService发生RPC请求,内部请求的url为internal:discovery/zen/publish/commit

接收数据的节点注册的处理器为CommitClusterStateRequestHandler

//提交处理
        transportService.registerRequestHandler(COMMIT_ACTION_NAME, ThreadPool.Names.SAME, false, false, CommitClusterStateRequest::new,
            new CommitClusterStateRequestHandler());

//提交集群状态处理
    private class CommitClusterStateRequestHandler implements TransportRequestHandler<CommitClusterStateRequest> {
        @Override
        public void messageReceived(CommitClusterStateRequest request, final TransportChannel channel, Task task) throws Exception {
            handleCommitRequest(request, channel);
        }
    }

节点应用集群状态

@Override
    public void onClusterStateCommitted(String stateUUID, ActionListener<Void> processedListener) {
        //更新提交新状态
        final ClusterState state = pendingStatesQueue.markAsCommitted(stateUUID,
            new PendingClusterStatesQueue.StateProcessedListener() {
                @Override
                public void onNewClusterStateProcessed() {
                    processedListener.onResponse(null);
                }

                @Override
                public void onNewClusterStateFailed(Exception e) {
                    processedListener.onFailure(e);
                }
            });
        if (state != null) {
            synchronized (stateMutex) {
                //应用新的集群状态
                processNextCommittedClusterState("master " + state.nodes().getMasterNode() +
                    " committed version [" + state.version() + "]");
            }
        }
    }

 //集群应用新的集群状态
        clusterApplier.onNewClusterState("apply cluster state (from master [" + reason + "])",
            this::clusterState,
            new ClusterApplyListener() {
                @Override
                public void onSuccess(String source) {
                    try {
                        pendingStatesQueue.markAsProcessed(newClusterState);
                    } catch (Exception e) {
                        onFailure(source, e);
                    }
                }

                @Override
                public void onFailure(String source, Exception e) {
                    logger.error(() -> new ParameterizedMessage("unexpected failure applying [{}]", reason), e);
                    try {
                        // TODO: use cluster state uuid instead of full cluster state so that we don't keep reference to CS around
                        // for too long.
                        pendingStatesQueue.markAsFailed(newClusterState, e);
                    } catch (Exception inner) {
                        inner.addSuppressed(e);
                        logger.error(() -> new ParameterizedMessage("unexpected exception while failing [{}]", reason), inner);
                   }
                }
            });

最终调用到ClusterApplierService的runTask方法

private void runTask(UpdateTask task) {
        if (!lifecycle.started()) {
            logger.debug("processing [{}]: ignoring, cluster applier service not started", task.source);
            return;
        }

        logger.debug("processing [{}]: execute", task.source);
        //获取之前的集群状态
        final ClusterState previousClusterState = state.get();
        //任务执行起始时间
        long startTimeMS = currentTimeInMillis();
        //简单的秒表,允许对许多任务进行计时
        final StopWatch stopWatch = new StopWatch();
        final ClusterState newClusterState;
        try {
            try (Releasable ignored = stopWatch.timing("running task [" + task.source + ']')) {
                newClusterState = task.apply(previousClusterState);
            }
        } catch (Exception e) {
            TimeValue executionTime = TimeValue.timeValueMillis(Math.max(0, currentTimeInMillis() - startTimeMS));
            logger.trace(() -> new ParameterizedMessage(
                "failed to execute cluster state applier in [{}], state:\nversion [{}], source [{}]\n{}",
                executionTime, previousClusterState.version(), task.source, previousClusterState), e);
            warnAboutSlowTaskIfNeeded(executionTime, task.source, stopWatch);
            task.listener.onFailure(task.source, e);
            return;
        }

        if (previousClusterState == newClusterState) {
            TimeValue executionTime = TimeValue.timeValueMillis(Math.max(0, currentTimeInMillis() - startTimeMS));
            logger.debug("processing [{}]: took [{}] no change in cluster state", task.source, executionTime);
            warnAboutSlowTaskIfNeeded(executionTime, task.source, stopWatch);
            task.listener.onSuccess(task.source);
        } else {
            if (logger.isTraceEnabled()) {
                logger.debug("cluster state updated, version [{}], source [{}]\n{}", newClusterState.version(), task.source,
                    newClusterState);
            } else {
                logger.debug("cluster state updated, version [{}], source [{}]", newClusterState.version(), task.source);
            }
            try {
                //执行状态更新
                applyChanges(task, previousClusterState, newClusterState, stopWatch);
                TimeValue executionTime = TimeValue.timeValueMillis(Math.max(0, currentTimeInMillis() - startTimeMS));
                logger.debug("processing [{}]: took [{}] done applying updated cluster state (version: {}, uuid: {})", task.source,
                    executionTime, newClusterState.version(),
                    newClusterState.stateUUID());
                warnAboutSlowTaskIfNeeded(executionTime, task.source, stopWatch);
                task.listener.onSuccess(task.source);
            } catch (Exception e) {
                TimeValue executionTime = TimeValue.timeValueMillis(Math.max(0, currentTimeInMillis() - startTimeMS));
                assert applicationMayFail();
                task.listener.onFailure(task.source, e);
            }
        }
    }

遍历所有状态应用者,调用集群状态的应用者的应用集群状态方法

//发送集群状态应用者
callClusterStateAppliers(clusterChangedEvent, stopWatch);
private void callClusterStateAppliers(ClusterChangedEvent clusterChangedEvent, StopWatch stopWatch) {
        clusterStateAppliers.forEach(applier -> {
            logger.trace("calling [{}] with change to version [{}]", applier, clusterChangedEvent.state().version());
            try (Releasable ignored = stopWatch.timing("running applier [" + applier + "]")) {
                applier.applyClusterState(clusterChangedEvent);
            }
        });
    }

遍历所有集群状态监听器,调用集群状态变更回调函数

//发送集群状态监听器
callClusterStateListeners(clusterChangedEvent, stopWatch);
//执行集群状态变更后的回调
    private void callClusterStateListeners(ClusterChangedEvent clusterChangedEvent, StopWatch stopWatch) {
        Stream.concat(clusterStateListeners.stream(), timeoutClusterStateListeners.stream()).forEach(listener -> {
            try {
                logger.trace("calling [{}] with change to version [{}]", listener, clusterChangedEvent.state().version());
                try (Releasable ignored = stopWatch.timing("notifying listener [" + listener + "]")) {
                    listener.clusterChanged(clusterChangedEvent);
                }
            } catch (Exception ex) {
                logger.warn("failed to notify ClusterStateListener", ex);
            }
        });
    }

回到主节点执行回调函数handleResponse和handleException两个回调函数执行相同的处理逻辑,将latch减一,如果有的节点执行失败也不会执行修复逻辑。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1921702.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

5款文案生成神器,自动一键生成原创文案

文案在我们的生活中随处可见&#xff0c;好的文案内容不仅可以为企业带来销售转化&#xff0c;而且还能提升品牌的影响力&#xff0c;因此文案的重要性可想而知&#xff0c;对于文案创作者来说&#xff0c;写作好的文案不是轻松容易的事&#xff0c;但如果把这个任务交给文案生…

【低照度图像增强系列(8)】URetinex-Net算法详解与代码实现(2022|CVPR)

前言 ☀️ 在低照度场景下进行目标检测任务&#xff0c;常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题&#xff0c;给检测带来一定的难度。 &#x1f33b;使用图像增强模块对原始图像进行画质提升&#xff0c;恢复各类图像信息&#xff0c;再使用目标检…

手机也能玩转AI影像?荣耀200系列带来手机人像摄影新升级

智能手机在影像技术上的革新从未停歇&#xff0c;荣耀200系列系统的全新升级&#xff0c;为用户带来了更加丰富和便捷的拍摄体验。AI技术的融入&#xff0c;让摄影变得更加智能&#xff0c;简化了编辑过程&#xff0c;使得每个用户都能成为专业的摄影师。 一、AI消除功能&#…

差旅费控平台选型抓住这五点,选的好用的才舒心!

市场竞争从增量机会转为存量博弈&#xff0c;起决定作用的是造就和增强公司的核心竞争力&#xff0c;以精细化管理做足降本增效的“基本功”成为众多企业谋划发展的关键词。 当下企业差旅服务已经初步完成数字化升级&#xff0c;线上预订&#xff0c;灵活支付&#xff0c;统一结…

Linux系统编程-进程间通信(IPC)常用方式详解

进程间通信&#xff08;IPC&#xff0c;Inter-Process Communication&#xff09;是指在操作系统中&#xff0c;不同进程之间进行数据交换和信息传递的机制。这种通信允许正在运行的多个进程能够相互协作、共享数据或者进行同步操作&#xff0c;以实现更复杂的任务和功能。Linu…

国外UI设计赏析—汽车行业

国外汽车网页设计界面往往展现出几个显著的优点&#xff0c;这些优点不仅提升了用户体验&#xff0c;还增强了品牌形象与产品吸引力。首先&#xff0c;它们注重界面设计的直观性与互动性&#xff0c;通过高清大图、动态效果以及简洁明了的布局&#xff0c;让用户能够一目了然地…

王老师 linux c++ 通信架构 笔记(一)linux虚拟机的安装

&#xff08;0&#xff09;本门课程会涉及很多知识。在此集中记录&#xff0c;做笔记&#xff0c;也可能加入别的专栏。 &#xff08;1&#xff09; vmware 15 的下载和密钥上网查找。 ubuntu - 16 - 04 的版本才 800 M &#xff0c;来 csdn 找镜像 下载。 &#xff08;2&#…

动态sql 单选变多选

实体类 添加数组存储值 private ArrayList tssjfjList; <!-- <if test"tssjfj ! null and tssjfj ! ">and tssjfj #{tssjfj}</if>--><if test"tssjfjList ! null and tssjfjList.size() > 0">AND tssjfj IN<fo…

《昇思25天学习打卡营第20天|Diffusion扩散模型》

#学习打卡第20天# Diffusion扩散模型 本文的介绍是基于denoising diffusion probabilistic model &#xff08;DDPM&#xff09;&#xff0c;DDPM已经在&#xff08;无&#xff09;条件图像/音频/视频生成领域取得了较多显著的成果&#xff0c;现有的比较受欢迎的的例子包括由O…

2024年,搞AI就别卷模型了

你好&#xff0c;我是三桥君 2022年11月30日&#xff0c;OpenAI发布了一款全新的对话式通用人工智能工具——ChatGPT。 该工具发布后&#xff0c;仅用5天时间就吸引了100万活跃用户&#xff0c;而在短短2个月内&#xff0c;其活跃用户数更是飙升至1亿&#xff0c;成为历史上增…

牛顿黏滞定律

牛顿黏滞定律描述了流体内部的剪切应力与速度梯度之间的关系。公式如下&#xff1a; τ η d v x d y \tau \eta \frac{dv_x}{dy} τηdydvx​​ 其中&#xff1a; τ \tau τ 是剪切应力&#xff08;shear stress&#xff09;&#xff0c;单位是帕斯卡&#xff08;Pa&…

互信息(Mutual Information,MI)的原理和计算

互信息&#xff08;Mutual Information&#xff0c;MI&#xff09;是信息论中的一个度量&#xff0c;用于量化两个随机变量之间的依赖关系。互信息度量了一个随机变量包含了关于另一个随机变量的信息量。它可以用来识别和量化两个信号之间的非线性相关性。互信息可以揭示两个信…

Web开发:一个可拖拽的模态框(HTML、CSS、JavaScript)

目录 一、需求描述 二、实现效果 三、完整代码 四、实现过程 1、HTML 页面结构 2、CSS 元素样式 3、JavaScript动态控制 &#xff08;1&#xff09;获取元素 &#xff08;2&#xff09;显示\隐藏遮罩层与模态框 &#xff08;3&#xff09;实现模态框拖动效果 一、需求…

【离线查询 堆 优先队列】1383. 最大的团队表现值

本文涉及知识点 离线查询 堆 优先队列 算法与数据结构汇总 LeetCode1383. 最大的团队表现值 给定两个整数 n 和 k&#xff0c;以及两个长度为 n 的整数数组 speed 和 efficiency。现有 n 名工程师&#xff0c;编号从 1 到 n。其中 speed[i] 和 efficiency[i] 分别代表第 i 位…

开源项目的认识理解

目录 开源项目有哪些机遇与挑战&#xff1f; 1.开源项目的发展趋势 2.开源的经验分享&#xff08;向大佬请教与上网查询&#xff09; 3.开源项目的挑战 开源项目有哪些机遇与挑战&#xff1f; 1.开源项目的发展趋势 1. 持续增长与普及 - 开源项目将继续增长&#xff0c…

软件测试——AI快速入门

工作职责&#xff1a; 1.负责产品系统测试&#xff0c;包括功能测试、性能测试、稳定性测试、用户场景测试、可靠性测试等。 2.负责测试相关文档的编写&#xff0c;包括测试计划、测试用例、测试报告等。 3.负责自动化测试框架、用例的维护。 岗位要求&#xff1a; 1.熟练…

编程范式之并发编程

目录 前言1. 并发编程的定义2. 并发编程的特点2.1 任务交替执行2.2 状态共享与同步2.3 并行执行 3. 并发编程的适用场景3.1 高性能计算3.2 I/O 密集型应用3.3 实时系统 4. 并发编程的优点4.1 提高资源利用率4.2 缩短响应时间4.3 提高系统吞吐量 5. 并发编程的缺点5.1 编程复杂性…

MP4怎么转为MP3?超多人都在用的四种转换方法!

MP4怎么转为MP3&#xff1f;MP4&#xff0c;这一风靡全球的多媒体容器格式&#xff0c;无疑是数字时代的一枚璀璨明珠&#xff0c;深深烙印在每个人的数字生活之中&#xff0c;那么&#xff0c;它究竟是如何在众多格式中脱颖而出&#xff0c;赢得如此广泛认可的呢&#xff1f;首…

【Redis】初识 Redis

文章目录 1 什么是 Redis2 Redis 的特点2.1 速度快2.2 可编程性2.3 可拓展性2.4 持久化2.5 主从复制2.5 高可用和分布式2.6 客户端语言多 3 Redis 使用场景3.1 实时数据存储3.2 缓存和 Session 存储3.3 消息队列 4 Redis 重大版本5 CentOS7 安装 Redis5 1 什么是 Redis Redis …

【typedb】例子:药物发现 1: 模式导入

typedb-examples/drug-discovery/ Drug discovery监听0.0.0.0:1729 但这么连接肯定不行: localhost:1729 可以: 一直无法点击schema图标:先创建一个数据库 选中数据库: 选中后就可以了: