【AIGC】二、mac本地采用GPU启动keras运算

news2025/1/25 4:37:07

mac本地采用GPU启动keras运算

  • 一、问题背景
  • 二、技术背景
  • 三、实验验证
    • 本机配置
    • 安装PlaidML
      • 安装plaidml-keras
      • 配置默认显卡
    • 运行采用 CPU运算的代码
        • step1 先导入keras包,导入数据cifar10,这里可能涉及外网下载,有问题可以参考[keras使用基础问题](https://editor.csdn.net/md/?articleId=140331142)
        • step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载,有问题可以参考[keras使用基础问题](https://editor.csdn.net/md/?articleId=140331142)
        • step3 模型编译
        • step4 进行一次预测
        • step5 进行10次预测
    • 运行采用 GPU运算的代码
      • 采用显卡metal_intel(r)_uhd_graphics_630.0
        • step0 通过plaidml导入keras,之后再做keras相关操作
        • step1 先导入keras包,导入数据cifar10
        • step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
        • step3 模型编译
        • step4 进行一次预测
        • step5 进行10次预测
      • 采用显卡metal_amd_radeon_pro_5300m.0
        • step0 通过plaidml导入keras,之后再做keras相关操作
        • step1 先导入keras包,导入数据cifar10
        • step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
        • step3 模型编译
        • step4 进行一次预测
        • step5 进行10次预测
  • 四、评估讨论

一、问题背景

从上一篇文章中,我们已经发现在大模型的运算中,采用cpu进行运算时,对于cpu的使用消耗很大。因此我们这里会想到如果机器中有GPU显卡,如何能够发挥显卡在向量运算中的优势,将机器学习相关的运算做的又快又好。

二、技术背景

我们知道当前主流的支持机器学习比较好的显卡为 Nvida系列的显卡,俗称 N卡,但是在mac机器上,通常集成的都是 AMD系列的显卡。两种不同的硬件指令集的差异导致上层需要有不同的实现技术。
但是在 AMD显卡中,有一种PlaidML的技术,通过该插件,可以封装不同显卡的差异。

PlaidML项目地址:https://github.com/plaidml/plaidml
目前 PlaidML 已经支持 Keras、ONNX 和 nGraph 等工具,直接用 Keras 建个模,MacBook 轻轻松松调用 GPU。
通过这款名为 PlaidML 的工具,不论英伟达、AMD 还是英特尔显卡都可以轻松搞定深度学习训练了。

参考:Mac使用PlaidML加速强化学习训练

三、实验验证

本次操作,对于一个常规的keras的算法,分别在cpu和 gpu下进行多轮计算,统计耗时。进行对比统计。

本机配置

本次采用的mac机器的软件、硬件参数如下
在这里插入图片描述

安装PlaidML

由于安装依赖包的过程,需要有命令交互,因此安装plaidML包操作在命令行进行,代码执行在 jupyter中进行。

由于采用虚拟环境时会jupyter会有需要创建 kernal的技术点,因此这里建议暂时直接用原python环境进行验证。了解jupyter在虚拟环境的配置特点的同学可以尝试在虚拟环境中操作。

安装plaidml-keras

pip3  install plaidml-keras

笔者在采用命令 pip3 install plaidml-keras 安装最新版本plaidml-keras为0.7.0后,在执行初始化操作时遇到bug,后续降为0.6.4执行正常。但是后续再次安装为 0.7.0,又正常了。
plaidml in github

配置默认显卡

在命令行执行

plaidml-setup

交互内容如下

(venv) tsingj@tsingjdeMacBook-Pro-2 ~  # plaidml-setup

PlaidML Setup (0.6.4)

Thanks for using PlaidML!

Some Notes:
  * Bugs and other issues: https://github.com/plaidml/plaidml
  * Questions: https://stackoverflow.com/questions/tagged/plaidml
  * Say hello: https://groups.google.com/forum/#!forum/plaidml-dev
  * PlaidML is licensed under the Apache License 2.0


Default Config Devices:
   metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)
   metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)

Experimental Config Devices:
   llvm_cpu.0 : CPU (LLVM)
   metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)
   opencl_amd_radeon_pro_5300m_compute_engine.0 : AMD AMD Radeon Pro 5300M Compute Engine (OpenCL)
   opencl_cpu.0 : Intel CPU (OpenCL)
   opencl_intel_uhd_graphics_630.0 : Intel Inc. Intel(R) UHD Graphics 630 (OpenCL)
   metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)

Using experimental devices can cause poor performance, crashes, and other nastiness.

Enable experimental device support? (y,n)[n]:

列举现实当前可以支持的显卡列表,选择默认支持支持的2个显卡,还是试验阶段所有支持的6 种硬件。
可以看到默认支持的 2 个显卡即最初截图中现实的两个显卡。为了测试稳定起见,这里先选择N,回车。

Multiple devices detected (You can override by setting PLAIDML_DEVICE_IDS).
Please choose a default device:

   1 : metal_intel(r)_uhd_graphics_630.0
   2 : metal_amd_radeon_pro_5300m.0

Default device? (1,2)[1]:1

Selected device:
    metal_intel(r)_uhd_graphics_630.0

对于默认选择的设置,设置一个默认设备,这里我们先将metal_intel®_uhd_graphics_630.0设置为默认设备,当然这个设备其实性能比较差,后续我们会再将metal_amd_radeon_pro_5300m.0设置为默认设备进行对比。
写入 1 之后,回车。

Almost done. Multiplying some matrices...
Tile code:
  function (B[X,Z], C[Z,Y]) -> (A) { A[x,y : X,Y] = +(B[x,z] * C[z,y]); }
Whew. That worked.

Save settings to /Users/tsingj/.plaidml? (y,n)[y]:y
Success!

回车,将配置信息写入默认配置文件中,完成配置。

运行采用 CPU运算的代码

本节中采用jupyter进行一个简单算法代码的运行,统计其时间。

step1 先导入keras包,导入数据cifar10,这里可能涉及外网下载,有问题可以参考keras使用基础问题
#!/usr/bin/env python
import numpy as np
import os
import time
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)

注意,这里默认的keral的运算后端应该是采用了tenserflow,查看输出

2024-07-11 14:36:02.753107: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.

step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载,有问题可以参考keras使用基础问题
model = kapp.VGG19()
step3 模型编译
model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
step4 进行一次预测
print("Running initial batch (compiling tile program)")
y = model.predict(x=x_train, batch_size=batch_size)

Running initial batch (compiling tile program)
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 1s/step

step5 进行10次预测
# Now start the clock and run 10 batchesprint("Timing inference...")
start = time.time()
for i in range(10):
    y = model.predict(x=x_train, batch_size=batch_size)
    print("Ran in {} seconds".format(time.time() - start))

1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 891ms/step
Ran in 0.9295139312744141 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 923ms/step
Ran in 1.8894760608673096 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 893ms/step
Ran in 2.818492889404297 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 932ms/step
Ran in 3.7831668853759766 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 892ms/step
Ran in 4.71358585357666 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 860ms/step
Ran in 5.609835863113403 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 878ms/step
Ran in 6.5182459354400635 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 871ms/step
Ran in 7.423128128051758 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 896ms/step
Ran in 8.352543830871582 seconds
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 902ms/step
Ran in 9.288795948028564 seconds

运行采用 GPU运算的代码

采用显卡metal_intel®_uhd_graphics_630.0

step0 通过plaidml导入keras,之后再做keras相关操作
# Importing PlaidML. Make sure you follow this order
import plaidml.keras
plaidml.keras.install_backend()
import os
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"

注:
1、在采用plaidml=0.7.0 版本时,plaidml.keras.install_backend()操作会发生报错
2、这步操作,会通过plaidml导入keras,将后台运算引擎设置为plaidml,而不再采用tenserflow

step1 先导入keras包,导入数据cifar10
#!/usr/bin/env python
import numpy as np
import os
import time
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
model = kapp.VGG19()

首次运行输出显卡信息

INFO:plaidml:Opening device “metal_intel®_uhd_graphics_630.0”

step3 模型编译
model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
step4 进行一次预测
print("Running initial batch (compiling tile program)")
y = model.predict(x=x_train, batch_size=batch_size)

Running initial batch (compiling tile program)

由于输出较快,内容打印只有一行。

step5 进行10次预测
# Now start the clock and run 10 batchesprint("Timing inference...")
start = time.time()
for i in range(10):
    y = model.predict(x=x_train, batch_size=batch_size)
    print("Ran in {} seconds".format(time.time() - start))

Ran in 4.241918087005615 seconds
Ran in 8.452141046524048 seconds
Ran in 12.665411949157715 seconds
Ran in 16.849968910217285 seconds
Ran in 21.025720834732056 seconds
Ran in 25.212764024734497 seconds
Ran in 29.405478954315186 seconds
Ran in 33.594977140426636 seconds
Ran in 37.7886438369751 seconds
Ran in 41.98136305809021 seconds

采用显卡metal_amd_radeon_pro_5300m.0

在plaidml-setup设置的选择显卡的阶段,不再选择显卡metal_intel®_uhd_graphics_630.0,而是选择metal_amd_radeon_pro_5300m.0

(venv) tsingj@tsingjdeMacBook-Pro-2 ~  # plaidml-setup

PlaidML Setup (0.6.4)

Thanks for using PlaidML!

Some Notes:
  * Bugs and other issues: https://github.com/plaidml/plaidml
  * Questions: https://stackoverflow.com/questions/tagged/plaidml
  * Say hello: https://groups.google.com/forum/#!forum/plaidml-dev
  * PlaidML is licensed under the Apache License 2.0


Default Config Devices:
   metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)
   metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)

Experimental Config Devices:
   llvm_cpu.0 : CPU (LLVM)
   metal_intel(r)_uhd_graphics_630.0 : Intel(R) UHD Graphics 630 (Metal)
   opencl_amd_radeon_pro_5300m_compute_engine.0 : AMD AMD Radeon Pro 5300M Compute Engine (OpenCL)
   opencl_cpu.0 : Intel CPU (OpenCL)
   opencl_intel_uhd_graphics_630.0 : Intel Inc. Intel(R) UHD Graphics 630 (OpenCL)
   metal_amd_radeon_pro_5300m.0 : AMD Radeon Pro 5300M (Metal)

Using experimental devices can cause poor performance, crashes, and other nastiness.

Enable experimental device support? (y,n)[n]:n

Multiple devices detected (You can override by setting PLAIDML_DEVICE_IDS).
Please choose a default device:

   1 : metal_intel(r)_uhd_graphics_630.0
   2 : metal_amd_radeon_pro_5300m.0

Default device? (1,2)[1]:2

Selected device:
    metal_amd_radeon_pro_5300m.0

Almost done. Multiplying some matrices...
Tile code:
  function (B[X,Z], C[Z,Y]) -> (A) { A[x,y : X,Y] = +(B[x,z] * C[z,y]); }
Whew. That worked.

Save settings to /Users/tsingj/.plaidml? (y,n)[y]:y
Success!
step0 通过plaidml导入keras,之后再做keras相关操作
# Importing PlaidML. Make sure you follow this order
import plaidml.keras
plaidml.keras.install_backend()
import os
os.environ["KERAS_BACKEND"] = "plaidml.keras.backend"

注:
1、在采用plaidml=0.7.0 版本时,plaidml.keras.install_backend()操作会发生报错
2、这步操作,会通过plaidml导入keras,将后台运算引擎设置为plaidml,而不再采用tenserflow

step1 先导入keras包,导入数据cifar10
#!/usr/bin/env python
import numpy as np
import os
import time
import keras
import keras.applications as kapp
from keras.datasets import cifar10
(x_train, y_train_cats), (x_test, y_test_cats) = cifar10.load_data()
batch_size = 8
x_train = x_train[:batch_size]
x_train = np.repeat(np.repeat(x_train, 7, axis=1), 7, axis=2)
step2 导入计算模型,如果本地不存在该模型数据,会自动进行下载
model = kapp.VGG19()

INFO:plaidml:Opening device “metal_amd_radeon_pro_5300m.0”
注意,这里首次执行输入了显卡信息。

step3 模型编译
model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
step4 进行一次预测
print("Running initial batch (compiling tile program)")
y = model.predict(x=x_train, batch_size=batch_size)

Running initial batch (compiling tile program)

由于输出较快,内容打印只有一行。

step5 进行10次预测
# Now start the clock and run 10 batchesprint("Timing inference...")
start = time.time()
for i in range(10):
    y = model.predict(x=x_train, batch_size=batch_size)
    print("Ran in {} seconds".format(time.time() - start))

查看输出

Ran in 0.43606019020080566 seconds
Ran in 0.8583459854125977 seconds
Ran in 1.2787911891937256 seconds
Ran in 1.70143723487854 seconds
Ran in 2.1235032081604004 seconds
Ran in 2.5464580059051514 seconds
Ran in 2.9677979946136475 seconds
Ran in 3.390064001083374 seconds
Ran in 3.8117799758911133 seconds
Ran in 4.236911058425903 seconds

四、评估讨论

显卡metal_intel®_uhd_graphics_630.0的内存值为1536 MB,虽然作为显卡,其在进行运算中性能不及本机的 6核CPU;
显卡metal_amd_radeon_pro_5300m.0,内存值为4G,其性能与本机 CPU对比,提升将近 1 倍数。

由此可以看到对于采用 GPU在进行机器学习运算中的强大优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1919090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

starccm+软件许可优化解决方案

starccm软件介绍 Simcenter Star CCM专注于CFD的多物理场仿真,支持流体动力学模拟、电池模拟、协同仿真、设计探索、电机、电化学、引擎模拟、移动物体、流变学、固体力学等多个方面,无论是真实的多物理场仿真,捕捉产品的完整几何形状&#x…

LVS实验

LVS实验 nginx1 RS1 192.168.11.137 nginx2 RS2 192.168.11.138 test4 调度器 ens33 192.168.11.135 ens36 12.0.0.1 test2 客户端 12.0.0.10 一、test4 配置两张网卡地址信息 [roottest4 network-scripts]# cat ifcfg-ens33 TYPEEthernet BOOTPROTOstatic DEFROUTEyes DEVIC…

利用 Plotly.js 创建交互式条形图

本文由ScriptEcho平台提供技术支持 项目地址:传送门 利用 Plotly.js 创建交互式条形图 应用场景介绍 交互式条形图广泛应用于数据可视化和分析领域。它可以直观地展示不同类别或分组之间的数值差异,并允许用户通过交互操作探索数据。 代码基本功能介…

【经典面试题】环形链表

1.环形链表oj 2. oj解法 利用快慢指针: /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/typedef struct ListNode ListNode; bool hasCycle(struct ListNode *head) {ListNode* slow head, *fast…

51单片机(STC8051U34K64)_RA8889_SPI4参考代码(v1.3)

硬件:STC8051U34K64 RA8889开发板(硬件跳线变更为SPI-4模式,PS101,R143,R141短接,R142不接) STC8051U34K64是STC最新推出来的单片机,主要用于替换传统的8051单片机,与标…

大佬,简单解释下“嵌入式软件开发”和“嵌入式硬件开发”的区别

在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「嵌入式的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!!首先,嵌入式硬…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第一篇 嵌入式Linux入门篇-第十九章 Linux 工具之make 工具和 makefile 文件

i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

【car】深入浅出学习机械燃油车知识、结构、原理、维修、保养、改装、编程

汽车的五大总成通常是指发动机、变速器、前后桥、车架和悬挂系统。 发动机:是汽车的动力来源,负责将燃料的化学能转化为机械能,驱动汽车行驶。常见的发动机类型有内燃机(如汽油发动机、柴油发动机)和电动机&#xff0…

hypermill软件许可优化解决方案

Hypermill软件介绍 hyperMILL的最大优势表现在五轴联动方面 五轴联动被广泛应于汽车、工具、模具、机械、航空航天等领域,比如航空叶轮、叶片、结构件的铣削。现在很多机床和控制器都可以适应五轴铣削要求,然而在软件方面多采取定位加工方式(…

案例|LabVIEW连接S7-1200PLC

附带: 写了好的参考文章: 通讯测试工具和博图仿真机的连接教程【内含图文完整过程软件使用】 解决博图V15 V16 V17 V18等高版本和低版本在同款PLC上不兼容的问题 目录 前言一、准备条件二、步骤1. HslCommunicationDemo问题1:连接失败?问题…

..质数..

先弄清楚我们在上小学时 学的概念。 1、什么是质因数? -质因数是指能够整除给定正整数的质数。每个正整数都可以被表示为几个质数的乘积,这些质数就是该数的质因数。质因数分解是将一个正整数分解成若干个质数相乘的过程。例如,数字 12…

[激光原理与应用-109]:南京科耐激光-激光焊接-焊中检测-智能制程监测系统IPM介绍 - 12 - 焊接工艺之影响焊接效果的因素

目录 一、影响激光焊接效果的因素 1.1、光束特征 1.2、焊接特征 1.3、保护气体 二、材料对焊接的影响 2.1 材料特征 2.2 不同材料对激光的吸收率 (一)、不同金属材料对不同激光的吸收率 1. 金属材料对激光的普遍反应 2. 不同波长激光的吸收率差…

ant design pro多页签功能

效果: 原理: 1、所有需要页签页面,都需要一个共同父组件 2、如何缓存,用的是ant的Tabs组件,在共同父组件中,实际是展示的Tabs组件 3、右键,用的是ant的Dropdown组件,当点击时&…

SpringBoot新手快速入门系列教程十:基于docker容器,部署一个简单的项目

前述: 本篇教程将略过很多docker下载环境配置的基础步骤,如果您对docker不太熟悉请参考我的上一个教程:SpringBoot新手快速入门系列教程九:基于docker容器,部署一个简单的项目 使用 Docker Compose 支持部署 Docker 项…

MySQL某个字段按指定值排序,其他值按创建时间排序

项目场景: MySQL某个字段按指定值排序,其他值按创建时间排序,我们需要用到FIELD() 函数,它是一种对查询结果排序的方法,可以根据指定的字段值顺序进行排序。 order by FIELD() 函数的语法如下: ORDER BY …

[GHCTF 2024 新生赛]ezzz_unserialize

源码&#xff1a; <?php /*** Author: hey* message: Patience is the key in life,I think youll be able to find vulnerabilities in code audits.* Have fun and Good luck!!!*/ error_reporting(0); class Sakura{public $apple;public $strawberry;public function …

LiteOS增加执行自定义源码

开发过程注意事项&#xff1a; 源码工程路径不能太长 源码工程路径不能有中文 一定要关闭360等杀毒软件&#xff0c;否则编译的打包阶段会出错 增加自定义源码的步骤: 1.创建源码目录 2. 创建源文件 新建myhello目录后&#xff0c;再此目录下再新建源文件myhello_demo.c 3. 编…

GitHub Codespace从入门到放弃

洞悉技术的本质&#xff0c;享受科技的乐趣 背景 我在使用腾讯云主机打开使用github使用免费云空间编译代码。 遇到问题 在打开过程中 提升如下错误 你遇到的问题 别人也可能遇到 https://github.com/orgs/community/discussions/109419 我做了什么 阅读官方文档 https://docs.…

集群管理脚本

虚拟机集群管理脚本 文章目录 虚拟机集群管理脚本一、远程调用脚本(remote_call.sh)二、远程复制目录脚本(remote_copy.sh) 一、远程调用脚本(remote_call.sh) 如果有传命令参数&#xff0c;则执行该命令&#xff1b;如果没有传命令参数&#xff0c;则不执行。 #!/bin/bashcm…

用python识别二维码(python实例二十三)

目录 1.认识Python 2.环境与工具 2.1 python环境 2.2 Visual Studio Code编译 3.识别二维码 3.1 代码构思 3.2 代码实例 3.3 运行结果 4.总结 1.认识Python Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。 Python 的设计具有很强的可读性&…