人工智能算法工程师(中级)课程4-sklearn机器学习之回归问题与代码详解

news2024/9/20 18:53:11

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程4-sklearn机器学习之回归问题与代码详解。回归分析是统计学和机器学习中的一种重要方法,用于研究因变量和自变量之间的关系。在机器学习中,回归算法被广泛应用于预测分析、趋势分析等领域。本文将介绍sklearn机器学习库中的一些常用回归算法,包括线性回归、Lasso回归、岭回归、多任务岭回归、核岭回归以及SVM-SVR模型。我们将分别介绍这些算法的数学原理和公式,并配套完整可运行代码。

文章目录

  • sklearn机器学习中的回归介绍与代码详解
    • 1. 线性回归
      • 线性回归的数学原理
      • 线性回归的代码实现
    • 2. Lasso回归和岭回归
      • Lasso回归和岭回归的数学原理
      • Lasso回归和岭回归的代码实现
    • 3. 多任务岭回归
      • 多任务岭回归的数学原理
      • 多任务岭回归的代码实现
    • 4. 核岭回归
      • 核岭回归的数学原理
      • 核岭回归的代码实现
    • 5. SVM-SVR模型
      • SVM-SVR模型的数学原理
      • SVM-SVR模型的代码实现
    • 总结

在这里插入图片描述

sklearn机器学习中的回归介绍与代码详解

1. 线性回归

线性回归是最简单的回归算法,它假设因变量和自变量之间存在线性关系。线性回归的目标是找到一条直线,使得所有数据点到这条直线的距离之和最小。这个目标可以通过最小二乘法来实现。

线性回归的数学原理

线性回归的模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + ⋯ + β n x n + ε y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \cdots + \beta_nx_n + \varepsilon y=β0+β1x1+β2x2++βnxn+ε
其中, y y y是因变量, x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn是自变量, β 0 , β 1 , … , β n \beta_0, \beta_1, \ldots, \beta_n β0,β1,,βn是模型参数, ε \varepsilon ε是误差项。
最小二乘法的目标是最小化误差平方和:
J ( β ) = ∑ i = 1 m ( y i − y ^ i ) 2 = ∑ i = 1 m ( y i − ( β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n ) ) 2 J(\beta) = \sum_{i=1}^{m}(y_i - \hat{y}_i)^2 = \sum_{i=1}^{m}(y_i - (\beta_0 + \beta_1x_{i1} + \beta_2x_{i2} + \cdots + \beta_nx_{in}))^2 J(β)=i=1m(yiy^i)2=i=1m(yi(β0+β1xi1+β2xi2++βnxin))2
其中, m m m是样本数量, y i y_i yi是第 i i i个样本的因变量值, y ^ i \hat{y}_i y^i是第 i i i个样本的预测值。

线性回归的代码实现

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np
# 生成模拟数据
np.random.seed(0)
X = np.random.rand(100, 1)
y = 2 * X[:, 0] + 1 + np.random.randn(100) * 0.05
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建线性回归模型
model = LinearRegression()
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: ", mse)

2. Lasso回归和岭回归

Lasso回归和岭回归是两种常用的正则化线性回归算法。它们在普通线性回归的基础上加入了正则化项,以避免过拟合问题。

Lasso回归和岭回归的数学原理

Lasso回归的模型可以表示为:
J ( β ) = ∑ i = 1 m ( y i − ( β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n ) ) 2 + α ∑ j = 1 n ∣ β j ∣ J(\beta) = \sum_{i=1}^{m}(y_i - (\beta_0 + \beta_1x_{i1} + \beta_2x_{i2} + \cdots + \beta_nx_{in}))^2 + \alpha \sum_{j=1}^{n}|\beta_j| J(β)=i=1m(yi(β0+β1xi1+β2xi2++βnxin))2+αj=1nβj
岭回归的模型可以表示为:
J ( β ) = ∑ i = 1 m ( y i − ( β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n ) ) 2 + α ∑ j = 1 n β j 2 J(\beta) = \sum_{i=1}^{m}(y_i - (\beta_0 + \beta_1x_{i1} + \beta_2x_{i2} + \cdots + \beta_nx_{in}))^2 + \alpha \sum_{j=1}^{n}\beta_j^2 J(β)=i=1m(yi(β0+β1xi1+β2xi2++βnxin))2+αj=1nβj2
其中, α \alpha α是正则化参数。
在这里插入图片描述

Lasso回归和岭回归的代码实现

from sklearn.linear_model import Lasso, Ridge
# 创建Lasso回归模型
lasso_model = Lasso(alpha=0.1)
# 创建岭回归模型
ridge_model = Ridge(alpha=0.1)
# 训练模型
lasso_model.fit(X_train, y_train)
ridge_model.fit(X_train, y_train)
# 预测
lasso_pred = lasso_model.predict(X_test)
ridge_pred = ridge_model.predict(X_test)
# 评估模型
lasso_mse = mean_squared_error(y_test, lasso_pred)
ridge_mse = mean_squared_error(y_test, ridge_pred)
print("Lasso mean squared error: ", lasso_mse)
print("Ridge mean squared error: ", ridge_mse)

3. 多任务岭回归

多任务岭回归是岭回归的扩展,用于同时解决多个回归问题。这些问题通常是相关的,因此共享相同的特征空间,但有不同的目标值。

多任务岭回归的数学原理

多任务岭回归的目标是最小化以下目标函数:
J ( B ) = 1 2 n ∑ i = 1 n ∥ y i − X i B ∥ 2 2 + α 2 ∑ j = 1 k ∥ B j ∥ 2 2 J(\mathbf{B}) = \frac{1}{2n} \sum_{i=1}^{n} \left\| \mathbf{y}_i - \mathbf{X}_i \mathbf{B} \right\|^2_2 + \frac{\alpha}{2} \sum_{j=1}^{k} \left\| \mathbf{B}_j \right\|^2_2 J(B)=2n1i=1nyiXiB22+2αj=1kBj22
其中, B \mathbf{B} B是一个 p × k p \times k p×k的系数矩阵, p p p是特征数量, k k k是任务数量, y i \mathbf{y}_i yi是第 i i i个任务的因变量向量, X i \mathbf{X}_i Xi是第 i i i个任务的自变量矩阵, α \alpha α是正则化参数。

多任务岭回归的代码实现

from sklearn.linear_model import MultiTaskLasso
# 假设我们有两个任务回归任务
X = np.random.rand(100, 10)
y = np.random.rand(100, 2)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建多任务岭回归模型
multi_task_lasso = MultiTaskLasso(alpha=0.1)
# 训练模型
multi_task_lasso.fit(X_train, y_train)
# 预测
multi_task_pred = multi_task_lasso.predict(X_test)
# 评估模型
multi_task_mse = mean_squared_error(y_test, multi_task_pred)
print("Multi Task Lasso mean squared error: ", multi_task_mse)

4. 核岭回归

核岭回归是非线性回归方法,它使用核技巧将数据映射到高维空间,然后维空间中进行线性回归。

核岭回归的数学原理

核岭回归的目标函数为表示为:
J ( w ) = 1 2 n ∥ K w − y ∥ 2 2 + α 2 w T w J(\mathbf{w}) = \frac{1}{2n} \left\| \mathbf{K} \mathbf{w} - \mathbf{y} \right\|^2_2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} J(w)=2n1Kwy22+2αwTw
其中, K \mathbf{K} K是核矩阵, w \mathbf{w} w是权重向量, y \mathbf{y} y是因变量向量, α \alpha α是正则化参数。

核岭回归的代码实现

from sklearn.kernel_ridge import KernelRidge
# 创建核岭回归模型
kernel_ridge = KernelRidge(kernel='rbf', alpha=1.0)
# 训练模型
kernel_ridge.fit(X_train, y_train.ravel())
# 预测
kernel_ridge_pred = kernel_ridge.predict(X_test)
# 评估模型
kernel_ridge_mse = mean_squared_error(y_test, kernel_ridge_pred)
print("Kernel Ridge mean squared error: ", kernel_ridge_mse)

5. SVM-SVR模型

支持向量回归(SVR)是支持向量机(SVM)在回归问题上的应用。SVR的目标是找到一个最优的超平面,使得所有数据点到这个超平面的距离之和最小。

SVM-SVR模型的数学原理

SVR的目标函数可以表示为:
min ⁡ w , b , ξ , ξ ∗ 1 2 ∥ w ∥ 2 + C ∑ i = 1 n ( ξ i + ξ i ∗ ) \min_{\mathbf{w}, b, \xi, \xi^*} \frac{1}{2} \left\| \mathbf{w} \right\|^2 + C \sum_{i=1}^{n} (\xi_i + \xi_i^*) w,b,ξ,ξmin21w2+Ci=1n(ξi+ξi)
约束条件为:
y i − w T ϕ ( x i ) − b ≤ ε + ξ i w T ϕ ( x i ) + b − y i ≤ ε + ξ i ∗ ξ i , ξ i ∗ ≥ 0 \begin{align*} y_i - \mathbf{w}^T \phi(\mathbf{x}_i) - b &\leq \varepsilon + \xi_i \\ \mathbf{w}^T \phi(\mathbf{x}_i) + b - y_i &\leq \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* &\geq 0 \end{align*} yiwTϕ(xi)bwTϕ(xi)+byiξi,ξiε+ξiε+ξi0
其中, w \mathbf{w} w是权重向量, b b b是偏置项, ϕ ( x i ) \phi(\mathbf{x}_i) ϕ(xi)是将输入向量映射到高维空间的函数, ξ \xi ξ ξ ∗ \xi^* ξ是松弛变量, C C C是惩罚参数, ε \varepsilon ε是容忍误差。

SVM-SVR模型的代码实现

from sklearn.svm import SVR
# 创建SVR模型
svr = SVR(kernel='rbf', C=1.0, epsilon=0.1)
# 训练模型
svr.fit(X_train, y_train.ravel())
# 预测
svr_pred = svr.predict(X_test)
# 评估模型
svr_mse = mean_squared_error(y_test, svr_pred)
print("SVR mean squared error: ", svr_mse)

总结

本文给大家展示了线性回归、Lasso回归、岭回归、多任务岭回归、核岭回归以及SVM-SVR模型在sklearn库中的实现。每个模型都包括了模型的创建、训练、预测和评估过程。在实际应用中,您需要根据具体问题选择合适的模型,并通过调整模型参数来优化模型性能。
sklearn库为各种回归算法提供了方便的接口,使得在Python中进行回归分析变得简单高效。通过理解和实践这些算法,您可以更好地解决实际问题,并在机器学习领域取得更好的成果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1916597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从零开始的python学习生活2

接上封装 class Phone:__volt0.5def __keepsinglecore(self):print("让cpu以单核运行")def if5G(self):if self.__volt>1:print("5G通话已开启")else:self.__keepsinglecore()print("电量不足,无法使用5G通话,已经设置为单…

【NLP学习笔记】transformers中的tokenizer切词时是否返回token_type_ids

结论 先说结论: 是否返回token_type_ids,可以在切词时通过 return_token_type_idsTrue/False指定,指定了True就肯定会返回,指定False,不一定就不返回。 分析 Doc地址 https://huggingface.co/docs/transformers/main…

MATLAB | 如何使用MATLAB优雅的推公式,全网最全MATLAB符号表达式使用教程

HEY, 各位这次是真的好久不见,本期推送来教大家如何使用MATLAB推公式并使用推出来的结果。 本文说白了就是讲符号表达式这个东西咋用,所使用最重要的函数就是syms,在开始前,首先要保证自己的MATLAB安装了Symbolic Mat…

【Pytorch】RNN for Image Classification

文章目录 1 RNN 的定义2 RNN 输入 input, h_03 RNN 输出 output, h_n4 多层5 小试牛刀 学习参考来自 pytorch中nn.RNN()总结RNN for Image Classification(RNN图片分类–MNIST数据集)pytorch使用-nn.RNN 1 RNN 的定义 nn.RNN(input_size, hidden_size, num_layers1, nonlinea…

特斯拉的人形机器人最新展示,穿戴遥操作示教的机器人学习!

在机器人领域,特斯拉的人形机器人一直备受关注。2021 年,在「特斯拉 AI 日」上,马斯克发布了特斯拉的通用机器人计划,并用图片展示了人形机器人 Tesla Bot 的大致形态。但当时的 Tesla Bot 只是个概念,动作展示部分是由…

C++基础学习笔记

1.命名空间(namespace) 1.什么是命名空间&命名空间的作用 1.在C/C中,变量、函数、类都是大量存在的,这些变量等的名称将都存在于全局作用域中,就会导致很多的命名冲突等。使用命名空间的目的就是对标识符的名称进行本地化,以…

springboot中通过jwt令牌校验以及前端token请求头进行登录拦截实战

前言 大家从b站大学学习的项目侧重点好像都在基础功能的实现上,反而一个项目最根本的登录拦截请求接口都不会写,怎么拦截?为什么拦截?只知道用户登录时我后端会返回一个token,这个token是怎么生成的,我把它…

YOLOv10改进 | Conv篇 | 全新的SOATA轻量化下采样操作ADown(参数量下降百分之二十,附手撕结构图)

一、本文介绍 本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的ADown模块来改进我们的Conv模块,其中YOLOv9针对于这个模块并没有介绍,只是在其项目文件中用到了,我将其整理出来用于我们的YOLOv10的项目,经…

【大模型】微调实战—使用 ORPO 微调 Llama 3

ORPO 是一种新颖微调(fine-tuning)技术,它将传统的监督微调(supervised fine-tuning)和偏好对齐(preference alignment)阶段合并为一个过程。这减少了训练所需的计算资源和时间。此外&#xff0…

【计算机毕业设计】012基于微信小程序的科创微应用平台

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

华为ensp实现防火墙的区域管理与用户认证

实验环境 基于该总公司内网,实现图片所在要求 后文配置请以本图为准 接口配置与网卡配置 1、创建vlan 2、防火墙g0/0/0与云页面登录 登录admin,密码Admin123,自行更改新密码 更改g0/0/0口ip,敲下命令service-manage all permit 网卡配置…

彩虹小插画:成都亚恒丰创教育科技有限公司

彩虹小插画:色彩斑斓的梦幻世界 在繁忙的生活节奏中,总有一抹温柔的色彩能悄然触动心弦,那就是彩虹小插画带来的梦幻与宁静。彩虹,这一自然界的奇迹,被艺术家们巧妙地融入小巧精致的插画之中,不仅捕捉了瞬…

3D线上展示技术如何应用到汽车营销中?有哪些优势?

传统的汽车销售主要是通过实体店面展示汽车,但这样的展示方式成本高昂,而且还有空间限制。近年来,随着互联网的不断发展,线上看车逐渐成为当下年轻消费群体的看车新选择,并且线上看车正在从2D平面转向3D立体体验。 一、…

three完全开源扩展案例01-三角形渐变

演示地址 import * as THREE from three import { OrbitControls } from three/examples/jsm/controls/OrbitControls.jsconst box document.getElementById(box)const scene new THREE.Scene()const camera new THREE.PerspectiveCamera(75, box.clientWidth / box.client…

VirtualBox NAT网络模式

设置网络模式 右键网络设置 查看此时IP SSH连接 端口转发设置 ssh连接 samba文件共享 虚拟机上samba服务启动运行了,但由于windows无法连接虚拟机IP,即samba访问的入口堵了,无法像访问本地磁盘一样通过samba通道访问虚拟机 替代方案——多…

自定义在线活动报名表单小程序源码系统 源代码+搭建部署教程 可二次定制开发

系统概述 在数字化时代,线上活动成为连接用户与组织的重要桥梁。为了高效地管理活动报名流程,一款灵活、易用的在线活动报名表单小程序显得尤为重要。本文旨在为开发者提供一套全面的解决方案,包括自定义在线活动报名表单小程序的源代码分析…

YOLOv10改进 | 损失函数篇 | SlideLoss、FocalLoss、VFLoss分类损失函数助力细节涨点(全网最全)

一、本文介绍 本文给大家带来的是分类损失 SlideLoss、VFLoss、FocalLoss损失函数,我们之前看那的那些IoU都是边界框回归损失,和本文的修改内容并不冲突,所以大家可以知道损失函数分为两种一种是分类损失另一种是边界框回归损失,…

推荐算法——MRR

定义: MRR计算的是第一个正确答案的排名的倒数,并对所有查询取平均值。它衡量了模型在排序结果中快速找到正确答案的能力。 其中: Q 是查询的总数。ranki​ 是第 i 个查询中第一个正确答案的排名(位置)。如果第一个正…

jdk中自带的并发类

1、seamplore 信号量 countDownLaunch:等待所有线程都完成,主线程在执行 CyclicBarrirer 内存屏障 exchanger 线程之间交换数据 phaser 阶段协同器 阻塞队列

C语言 | Leetcode C语言题解之第227题基本计算题II

题目&#xff1a; 题解&#xff1a; int calculate(char* s) {int n strlen(s);int stk[n], top 0;char preSign ;int num 0;for (int i 0; i < n; i) {if (isdigit(s[i])) {num num * 10 (int)(s[i] - 0);}if (!isdigit(s[i]) && s[i] ! || i n - 1) {s…