YOLOv10改进 | 损失函数篇 | SlideLoss、FocalLoss、VFLoss分类损失函数助力细节涨点(全网最全)

news2024/9/20 19:52:46

一、本文介绍

本文给大家带来的是分类损失 SlideLoss、VFLoss、FocalLoss损失函数,我们之前看那的那些IoU都是边界框回归损失,和本文的修改内容并不冲突,所以大家可以知道损失函数分为两种一种是分类损失另一种是边界框回归损失,上一篇文章里面我们总结了过去百分之九十的边界框回归损失的使用方法,本文我们就来介绍几种市面上流行的和最新的分类损失函数,同时在开始讲解之前推荐一下我的专栏,本专栏的内容支持(分类、检测、分割、追踪、关键点检测),专栏目前为限时折扣,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家,本文支持的损失函数共有如下图片所示

欢迎大家订阅我的专栏一起学习YOLO! 

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

一、本文介绍

二、原理介绍

三、核心代码

三、使用方式 

3.1 修改一

3.2 修改二

3.3 使用方法 

四 、本文总


二、原理介绍

其中绝大多数损失在前面我们都讲过了本文主要讲一下SlidLoss的原理,SlideLoss的损失首先是由YOLO-FaceV2提出来的。

​​

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转

​​


从摘要上我们可以看出SLideLoss的出现是通过权重函数来解决简单和困难样本之间的不平衡问题题,什么是简单样本和困难样本?

样本不平衡问题是一个常见的问题,尤其是在分类和目标检测任务中。它通常指的是训练数据集中不同类别的样本数量差异很大。对于人脸检测这样的任务来说,简单样本和困难样本之间的不平衡问题可以具体描述如下:

简单样本:

  • 容易被模型正确识别的样本。
  • 通常出现在数据集中的数量较多。
  • 特征明显,分类或检测边界清晰。
  • 在训练中,这些样本会给出较低的损失值,因为模型可以轻易地正确预测它们。

困难样本:

  • 模型难以正确识别的样本。
  • 在数据集中相对较少,但对模型性能的提升至关重要。
  • 可能由于多种原因变得难以识别,如遮挡、变形、模糊、光照变化、小尺寸或者与背景的低对比度。
  • 在训练中,这些样本会产生较高的损失值,因为模型很难对它们给出准确的预测。

解决样本不平衡的问题是提高模型泛化能力的关键。如果模型大部分只见过简单样本,它可能在实际应用中遇到困难样本时性能下降。因此采用各种策略来解决这个问题,例如重采样(对困难样本进行过采样或对简单样本进行欠采样)、修改损失函数(给困难样本更高的权重),或者是设计新的模型结构来专门关注困难样本。在YOLO-FaceV2中,作者通过Slide Loss这样的权重函数来让模型在训练过程中更关注那些困难样本(这也是本文的修改内容)


三、核心代码

使用方式看章节四

import math

class SlideLoss(nn.Module):
    def __init__(self, loss_fcn):
        super(SlideLoss, self).__init__()
        self.loss_fcn = loss_fcn
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply SL to each element

    def forward(self, pred, true, auto_iou=0.5):
        loss = self.loss_fcn(pred, true)
        if auto_iou < 0.2:
            auto_iou = 0.2
        b1 = true <= auto_iou - 0.1
        a1 = 1.0
        b2 = (true > (auto_iou - 0.1)) & (true < auto_iou)
        a2 = math.exp(1.0 - auto_iou)
        b3 = true >= auto_iou
        a3 = torch.exp(-(true - 1.0))
        modulating_weight = a1 * b1 + a2 * b2 + a3 * b3
        loss *= modulating_weight
        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class Focal_Loss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss

def reduce_loss(loss, reduction):
    """Reduce loss as specified.

    Args:
        loss (Tensor): Elementwise loss tensor.
        reduction (str): Options are "none", "mean" and "sum".

    Return:
        Tensor: Reduced loss tensor.
    """
    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, elementwise_mean:1, sum: 2
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.mean()
    elif reduction_enum == 2:
        return loss.sum()


def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
    """Apply element-wise weight and reduce loss.

    Args:
        loss (Tensor): Element-wise loss.
        weight (Tensor): Element-wise weights.
        reduction (str): Same as built-in losses of PyTorch.
        avg_factor (float): Avarage factor when computing the mean of losses.

    Returns:
        Tensor: Processed loss values.
    """
    # if weight is specified, apply element-wise weight
    if weight is not None:
        loss = loss * weight

    # if avg_factor is not specified, just reduce the loss
    if avg_factor is None:
        loss = reduce_loss(loss, reduction)
    else:
        # if reduction is mean, then average the loss by avg_factor
        if reduction == 'mean':
            loss = loss.sum() / avg_factor
        # if reduction is 'none', then do nothing, otherwise raise an error
        elif reduction != 'none':
            raise ValueError('avg_factor can not be used with reduction="sum"')
    return loss

def varifocal_loss(pred,
                   target,
                   weight=None,
                   alpha=0.75,
                   gamma=2.0,
                   iou_weighted=True,
                   reduction='mean',
                   avg_factor=None):
    """`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_

    Args:
        pred (torch.Tensor): The prediction with shape (N, C), C is the
            number of classes
        target (torch.Tensor): The learning target of the iou-aware
            classification score with shape (N, C), C is the number of classes.
        weight (torch.Tensor, optional): The weight of loss for each
            prediction. Defaults to None.
        alpha (float, optional): A balance factor for the negative part of
            Varifocal Loss, which is different from the alpha of Focal Loss.
            Defaults to 0.75.
        gamma (float, optional): The gamma for calculating the modulating
            factor. Defaults to 2.0.
        iou_weighted (bool, optional): Whether to weight the loss of the
            positive example with the iou target. Defaults to True.
        reduction (str, optional): The method used to reduce the loss into
            a scalar. Defaults to 'mean'. Options are "none", "mean" and
            "sum".
        avg_factor (int, optional): Average factor that is used to average
            the loss. Defaults to None.
    """
    # pred and target should be of the same size
    assert pred.size() == target.size()
    pred_sigmoid = pred.sigmoid()
    target = target.type_as(pred)
    if iou_weighted:
        focal_weight = target * (target > 0.0).float() + \
            alpha * (pred_sigmoid - target).abs().pow(gamma) * \
            (target <= 0.0).float()
    else:
        focal_weight = (target > 0.0).float() + \
            alpha * (pred_sigmoid - target).abs().pow(gamma) * \
            (target <= 0.0).float()
    loss = F.binary_cross_entropy_with_logits(
        pred, target, reduction='none') * focal_weight
    loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
    return loss

class Vari_focalLoss(nn.Module):

    def __init__(self,
                 use_sigmoid=True,
                 alpha=0.75,
                 gamma=2.0,
                 iou_weighted=True,
                 reduction='sum',
                 loss_weight=1.0):
        """`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_

        Args:
            use_sigmoid (bool, optional): Whether the prediction is
                used for sigmoid or softmax. Defaults to True.
            alpha (float, optional): A balance factor for the negative part of
                Varifocal Loss, which is different from the alpha of Focal
                Loss. Defaults to 0.75.
            gamma (float, optional): The gamma for calculating the modulating
                factor. Defaults to 2.0.
            iou_weighted (bool, optional): Whether to weight the loss of the
                positive examples with the iou target. Defaults to True.
            reduction (str, optional): The method used to reduce the loss into
                a scalar. Defaults to 'mean'. Options are "none", "mean" and
                "sum".
            loss_weight (float, optional): Weight of loss. Defaults to 1.0.
        """
        super(Vari_focalLoss, self).__init__()
        assert use_sigmoid is True, \
            'Only sigmoid varifocal loss supported now.'
        assert alpha >= 0.0
        self.use_sigmoid = use_sigmoid
        self.alpha = alpha
        self.gamma = gamma
        self.iou_weighted = iou_weighted
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        """Forward function.

        Args:
            pred (torch.Tensor): The prediction.
            target (torch.Tensor): The learning target of the prediction.
            weight (torch.Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Options are "none", "mean" and "sum".

        Returns:
            torch.Tensor: The calculated loss
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        if self.use_sigmoid:
            loss_cls = self.loss_weight * varifocal_loss(
                pred,
                target,
                weight,
                alpha=self.alpha,
                gamma=self.gamma,
                iou_weighted=self.iou_weighted,
                reduction=reduction,
                avg_factor=avg_factor)
        else:
            raise NotImplementedError
        return loss_cls


三、使用方式 

3.1 修改一

我们找到如下的文件'ultralytics/utils/loss.py'然后将上面的核心代码粘贴到文件的开头位置(注意是其他模块的导入之后!)粘贴后的样子如下图所示!

  


3.2 修改二

第二步我门中到函数class v8DetectionLoss:(没看错V10继承的v8损失函数我们修改v8就相当于修改了v10)!我们下下面的代码全部替换class v8DetectionLoss:的内容!

class v8DetectionLoss:
    """Criterion class for computing training losses."""

    def __init__(self, model):  # model must be de-paralleled
        """Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function."""
        device = next(model.parameters()).device  # get model device
        h = model.args  # hyperparameters

        m = model.model[-1]  # Detect() module
        self.bce = nn.BCEWithLogitsLoss(reduction="none")
        "下面的代码注释掉就是正常的损失函数,如果不注释使用的就是使用对应的损失失函数"
        # self.bce = Focal_Loss(nn.BCEWithLogitsLoss(reduction='none')) # Focal
        # self.bce = Vari_focalLoss() # VFLoss
        # self.bce = SlideLoss(nn.BCEWithLogitsLoss(reduction='none')) # SlideLoss
        # self.bce = QualityfocalLoss()  # 目前仅支持者目标检测需要注意 分割 Pose 等用不了!
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.no = m.nc + m.reg_max * 4
        self.reg_max = m.reg_max
        self.device = device

        self.use_dfl = m.reg_max > 1

        self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
        self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        """Decode predicted object bounding box coordinates from anchor points and distribution."""
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, preds, batch):
        """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats = preds[1] if isinstance(preds, tuple) else preds
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1
        )

        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size = pred_scores.shape[0]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # Targets
        targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        target_labels, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

        target_scores_sum = max(target_scores.sum(), 1)

        # Cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        if isinstance(self.bce, (nn.BCEWithLogitsLoss, Vari_focalLoss, Focal_Loss)):
            loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE VFLoss Focal
        elif isinstance(self.bce, SlideLoss):
            if fg_mask.sum():
                auto_iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True).mean()
            else:
                auto_iou = 0.1
            loss[1] = self.bce(pred_scores, target_scores.to(dtype), auto_iou).sum() / target_scores_sum  # SlideLoss
        elif isinstance(self.bce, QualityfocalLoss):
            if fg_mask.sum():
                pos_ious = bbox_iou(pred_bboxes, target_bboxes / stride_tensor, xywh=False).clamp(min=1e-6).detach()
                # 10.0x Faster than torch.one_hot
                targets_onehot = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
                                             dtype=torch.int64,
                                             device=target_labels.device)  # (b, h*w, 80)
                targets_onehot.scatter_(2, target_labels.unsqueeze(-1), 1)
                cls_iou_targets = pos_ious * targets_onehot
                fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc)  # (b, h*w, 80)
                targets_onehot_pos = torch.where(fg_scores_mask > 0, targets_onehot, 0)
                cls_iou_targets = torch.where(fg_scores_mask > 0, cls_iou_targets, 0)
            else:
                cls_iou_targets = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
                                              dtype=torch.int64,
                                              device=target_labels.device)  # (b, h*w, 80)
                targets_onehot_pos = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.nc),
                                                 dtype=torch.int64,
                                                 device=target_labels.device)  # (b, h*w, 80)
            loss[1] = self.bce(pred_scores, cls_iou_targets.to(dtype), targets_onehot_pos.to(torch.bool)).sum() / max(
                fg_mask.sum(), 1)
        else:
            loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # 确保有损失可用

        # Bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
                                              target_scores_sum, fg_mask,
                                              ((imgsz[0] ** 2 + imgsz[1] ** 2) / torch.square(stride_tensor)).repeat(1,
                                                                                                                     batch_size).transpose(
                                                  1, 0))

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

3.3 使用方法 

将上面的代码复制粘贴之后,我门找到下图所在的位置,使用方法就是那个取消注释就是使用的就是那个! 

​​


四 、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1916565.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

推荐算法——MRR

定义&#xff1a; MRR计算的是第一个正确答案的排名的倒数&#xff0c;并对所有查询取平均值。它衡量了模型在排序结果中快速找到正确答案的能力。 其中&#xff1a; Q 是查询的总数。ranki​ 是第 i 个查询中第一个正确答案的排名&#xff08;位置&#xff09;。如果第一个正…

jdk中自带的并发类

1、seamplore 信号量 countDownLaunch&#xff1a;等待所有线程都完成&#xff0c;主线程在执行 CyclicBarrirer 内存屏障 exchanger 线程之间交换数据 phaser 阶段协同器 阻塞队列

C语言 | Leetcode C语言题解之第227题基本计算题II

题目&#xff1a; 题解&#xff1a; int calculate(char* s) {int n strlen(s);int stk[n], top 0;char preSign ;int num 0;for (int i 0; i < n; i) {if (isdigit(s[i])) {num num * 10 (int)(s[i] - 0);}if (!isdigit(s[i]) && s[i] ! || i n - 1) {s…

Apache Dubbo与Nacos整合过程

Dubbo服务发现 Dubbo 提供的是一种 Client-Based 的服务发现机制&#xff0c;依赖第三方注册中心组件来协调服务发现过程&#xff0c;支持常用的注册中心如 Nacos、Consul、Zookeeper 等。 以下是 Dubbo 服务发现机制的基本工作原理图&#xff1a; 服务发现包含提供者、消费者…

快速测试electron环境是否安装成功

快速测试electron环境是否安装成功 测试代码正确运行的效果运行错误的效果v22.4.1 版本无法使用v20.15.1版本无法使用v18.20.4 版本无法使用 终极解决办法 测试代码 1.npx create-electron-app my-electron-app 2.cd my-electron-app 3.npm start 正确运行的效果 环境没问题…

如何给ubuntu虚拟机扩容

虚拟机设置 鼠标点击硬盘&#xff0c;弹出对话框后&#xff0c;点击扩展&#xff0c;输入扩展后的硬盘大小&#xff0c;我这里扩展到100G 安装工具 sudo apt-get install gparted 重新分区

边框插画:成都亚恒丰创教育科技有限公司

边框插画&#xff1a;艺术与生活的精致边界 在视觉艺术的广阔天地里&#xff0c;边框插画以其独特的魅力和细腻的表达方式&#xff0c;成为连接艺术与生活的一道精致边界。成都亚恒丰创教育科技有限公司它不仅仅是图像的外框装饰&#xff0c;更是情感、故事与创意的延伸&#…

Vue使用Echarts(入门级)

最终效果&#xff1a; npm install echarts --save // 先安装echarts<template><!-- 创建一个dom区域用于挂载echarts图表 --><div id"chart" style"width: 600px;height:500px;"/> </template> <script> import * as ech…

nginx安装配置视频频服务器-windows

编译安装nginx 1、安装perl 安装地址: https://strawberryperl.com&#xff0c;选择msi安装程序即可 2、安装sed for windows 下载地址&#xff1a;https://sourceforge.net/projects/gnuwin32/files/sed/&#xff0c;执行安装程序结束后&#xff0c;将安装包bin目录配置到…

如何在 C 语言中进行选择排序?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01; &#x1f4d9;C 语言百万年薪修炼课程 通俗易懂&#xff0c;深入浅出&#xff0c;匠心打磨&#xff0c;死磕细节&#xff0c;6年迭代&#xff0c;看过的人都说好。 文章目…

阿里云操作系统智能助手OS Copilot实验测评报告

简介&#xff1a;作为一名学生&#xff0c;阿里云操作系统智能助手OS Copilot对学生的帮助主要体现在提高学习效率、简化操作流程和优化系统管理等方面。通过其丰富的功能&#xff0c;从系统信息的快速获取到复杂的系统运维管理&#xff0c;OS Copilot都能为学生提供极大的便利…

计算机毕业设计Python深度学习游戏推荐系统 Django PySpark游戏可视化 游戏数据分析 游戏爬虫 Scrapy 机器学习 人工智能 大数据毕设

本论文的主要研究内容如下&#xff1a; 了解基于Spark的TapTap游戏数据分析系统的基本架构&#xff0c;掌握系统的开发方法&#xff0c;包括系统开发基本流程、开发环境的搭建、测试与运行等。 主要功能如下&#xff1a; &#xff08;1&#xff09;用户管理模块&#xff1a…

vue3 + i18n 中英文切换

第一步&#xff1a;安装vue-i18n npm install vue-i18n 第二步&#xff1a;配置语言包及js文件 目录如下&#xff1a; 英文语言包 en.js // lang/en.js - 英文语言包 export default {menu: { 库房管理: Warehouse Management,入库检测: Incoming Inspection, 设…

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验18 边界网关协议BGP

一、实验目的 1.验证边界网关协议BGP的作用&#xff1b; 2.学习在思科路由器上该协议的使用方法。 二、实验要求 1.使用Cisco Packet Tracer仿真平台&#xff1b; 2.观看B站湖科大教书匠仿真实验视频&#xff0c;完成对应实验。 三、实验内容 1.构建网络拓扑&#xff1b; …

算法力扣刷题记录 四十【226.翻转二叉树】

前言 继续二叉树其余操作&#xff1a; 记录 四十【226.翻转二叉树】 一、题目阅读 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1&#xff1a; 输入&#xff1a;root [4,2,7,1,3,6,9] 输出&#xff1a;[4,7,2,9,6,3,1]示例…

Elasticsearch:使用 Filebeat 从 Node.js Web 应用程序提取日志

本指南演示了如何从 Node.js Web 应用程序中提取日志并将其安全地传送到 Elasticsearch Service 部署中。你将设置 Filebeat 来监控具有标准 Elastic Common Schema (ECS) 格式字段的 JSON 结构日志文件&#xff0c;然后在向 Node.js 服务器发出请求时&#xff0c;你将在 Kiban…

云开发技术的壁纸小程序源码,无需服务期无需域名

1、本款小程序为云开发版本&#xff0c;不需要服务器域名 2、文件内有图文搭建教程&#xff0c;小白也不用担心不会搭建。 3、本程序反应速度极快&#xff0c;拥有用户投稿、积分系统帮助各位老板更多盈利。 4、独家动态壁纸在线下载&#xff0c;给用户更多的选择 5、最新版套图…

“论基于构件的软件开发方法及其应用”精选范文,软考高级论文,系统架构设计师论文

论文真题 基于构作的软件开发 (Component-Based Software Development&#xff0c;CBSD) 是一种基于分布对象技术、强调通过可复用构件设计与构造软件系统的软件复用途径。基于构件的软件系统中的构件可以是COTS &#xff08;Commercial-Off-the-Shelf&#xff09;构件&#x…

“金山-讯飞”杯2024年武汉理工大学程序设计竞赛 A. Mobiusp败走***(思维题-点双连通分量、连通性)

题目 思路来源 官方题解 题解 手玩发现&#xff0c;能换的话&#xff0c;当且仅当.和1在一个环里&#xff0c;而这就是点双连通分量 所以最优策略是先把.换到(x,y)的位置&#xff0c;然后判断.和1在不在一个环里 也就是&#xff1a; 1. 判断删掉1时&#xff0c;.和(x,y)联…

Open3D 点云配准精度评价指标-RMSE

目录 一、概述 1.1RMSE的计算方法 1.2RMSE的评价标准 二、代码实现 三、实现效果 3.1原始点云 3.2计算数据 一、概述 均方根误差(RMSE, Root Mean Squared Error)是衡量两个点云之间平均误差的一个常用指标。它通过计算匹配点对之间距离的平方和的平方根,来…