【Pytorch】RNN for Image Classification

news2024/9/20 18:43:16

在这里插入图片描述

文章目录

  • 1 RNN 的定义
  • 2 RNN 输入 input, h_0
  • 3 RNN 输出 output, h_n
  • 4 多层
  • 5 小试牛刀

学习参考来自

  • pytorch中nn.RNN()总结
  • RNN for Image Classification(RNN图片分类–MNIST数据集)
  • pytorch使用-nn.RNN

1 RNN 的定义

在这里插入图片描述

nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False)

参数说明

  • input_size输入特征的维度, 一般 rnn 中输入的是词向量,那么 input_size 就等于一个词向量的维度
  • hidden_size隐藏层神经元个数,或者也叫输出的维度(因为rnn输出为各个时间步上的隐藏状态)
  • num_layers网络的层数
  • nonlinearity激活函数
  • bias是否使用偏置
  • batch_first输入数据的形式,默认是 False,就是这样形式,(seq(num_step), batch, input_dim),也就是将序列长度放在第一位,batch 放在第二位
  • dropout是否应用dropout, 默认不使用,如若使用将其设置成一个0-1的数字即可
  • birdirectional是否使用双向的 rnn,默认是 False

2 RNN 输入 input, h_0

input 形状: 当设置 batch_first = False 时, ( L , N , H i n ) (L , N , H_{ i n}) (L,N,Hin) —— [时间步数, 批量大小, 特征维度]

当设置 batch_first = True时, ( N , L , H i n ) (N , L , H_{ i n}) (N,L,Hin)

当输入只有两个维度且 batch_size 为 1 时 :( L , H i n ) (L, H_{in})(L,H in ) 时,需要调用 torch.unsqueeze() 增加维度。

h_0 形状: ( D ∗ n u m _ l a y e r s , N , H o u t ) ( D ∗ n u m \_ l a y e r s , N , H _{o u t} ) (Dnum_layers,N,Hout), D 代表单向 RNN 还是双向 RNN。

在这里插入图片描述

3 RNN 输出 output, h_n

output 形状:当设置 batch_first = False 时, ( L , N , D ∗ H o u t ) (L, N, D * H_{out}) (L,N,DHout)—— [时间步数, 批量大小, 隐藏单元个数];
当设置 batch_first = True 时, ( N , L , D ∗ H o u t ) (N, L, D * H_{out}) (N,L,DHout)

h_n 形状 ( D ∗ num_layers , N , H o u t ) (D * \text{num\_layers}, N, H_{out}) (Dnum_layers,N,Hout)

4 多层

在这里插入图片描述

5 小试牛刀

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt

# -------------
# MNIST dataset
# -------------
batch_size = 128
train_dataset = torchvision.datasets.MNIST(root='./',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)
test_dataset = torchvision.datasets.MNIST(root='./',
                                          train=False,
                                          transform=transforms.ToTensor())
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)


# ---------------------
# Exploring the dataset
# ---------------------
# function to show an image
def imshow(img):
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))

# get some random training images
dataiter = iter(train_loader)
images, labels = dataiter.next()

if 1:
    # show image
    imshow(torchvision.utils.make_grid(images, nrow=15))
    plt.show()


# ----------
# parameters
# ----------
N_STEPS = 28
N_INPUTS = 28  # 输入数据的维度
N_NEURONS = 150  # RNN中间的特征的大小
N_OUTPUT = 10  # 输出数据的维度(分类的个数)
N_EPHOCS = 10  # epoch的大小
N_LAYERS = 3


# ------
# models
# ------
class ImageRNN(nn.Module):
    def __init__(self, batch_size, n_inputs, n_neurons, n_outputs, n_layers):
        super(ImageRNN, self).__init__()
        self.batch_size = batch_size  # 输入的时候batch_size, 128
        self.n_inputs = n_inputs  # 输入的维度, 28
        self.n_outputs = n_outputs  # 分类的大小 10
        self.n_neurons = n_neurons  # RNN中输出的维度 150
        self.n_layers = n_layers  # RNN中的层数 3
        self.basic_rnn = nn.RNN(self.n_inputs, self.n_neurons, num_layers=self.n_layers)
        self.FC = nn.Linear(self.n_neurons, self.n_outputs)

    def init_hidden(self):
        # (num_layers, batch_size, n_neurons)
        # initialize hidden weights with zero values
        # 这个是net的memory, 初始化memory为0
        return (torch.zeros(self.n_layers, self.batch_size, self.n_neurons).to(device))

    def forward(self, x):  # torch.Size([128, 28, 28])
        # transforms x to dimensions : n_step × batch_size × n_inputs
        x = x.permute(1, 0, 2)  # 需要把n_step放在第一个, torch.Size([28, 128, 28])
        self.batch_size = x.size(1)  # 每次需要重新计算batch_size, 因为可能会出现不能完整方下一个batch的情况 128
        self.hidden = self.init_hidden()  # 初始化hidden state  torch.Size([3, 128, 150])
        rnn_out, self.hidden = self.basic_rnn(x, self.hidden)  # 前向传播  torch.Size([28, 128, 150]), torch.Size([3, 128, 150])
        out = self.FC(rnn_out[-1])  # 求出每一类的概率 torch.Size([128, 150])->torch.Size([128, 10])
        return out.view(-1, self.n_outputs)  # 最终输出大小 : batch_size X n_output  torch.Size([128, 10])


# --------------------
# Device configuration
# --------------------
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


# ------------------------------------
# Test the model(输入一张图片查看输出)
# ------------------------------------
# 定义模型
model = ImageRNN(batch_size, N_INPUTS, N_NEURONS, N_OUTPUT, N_LAYERS).to(device)
print(model)
"""
ImageRNN(
  (basic_rnn): RNN(28, 150, num_layers=3)
  (FC): Linear(in_features=150, out_features=10, bias=True)
)
"""

# 初始化模型的weight
model.basic_rnn.weight_hh_l0.data = torch.eye(n=N_NEURONS, m=N_NEURONS, out=None).to(device)
model.basic_rnn.weight_hh_l1.data = torch.eye(n=N_NEURONS, m=N_NEURONS, out=None).to(device)
model.basic_rnn.weight_hh_l2.data = torch.eye(n=N_NEURONS, m=N_NEURONS, out=None).to(device)


# 定义数据
dataiter = iter(train_loader)
images, labels = dataiter.next()
model.hidden = model.init_hidden()
logits = model(images.view(-1, 28, 28).to(device))
print(logits[0:2])
"""
tensor([[-0.2846, -0.1503, -0.1593,  0.5478,  0.6827,  0.3489, -0.2989,  0.4575,
         -0.2426, -0.0464],
        [-0.6708, -0.3025, -0.0205,  0.2242,  0.8470,  0.2654, -0.0381,  0.6646,
         -0.4479,  0.2523]], device='cuda:0', grad_fn=<SliceBackward>)
"""

# 产生对角线是1的矩阵
torch.eye(n=5, m=5, out=None)
"""
tensor([[1., 0., 0., 0., 0.],
        [0., 1., 0., 0., 0.],
        [0., 0., 1., 0., 0.],
        [0., 0., 0., 1., 0.],
        [0., 0., 0., 0., 1.]])
"""


# --------
# Training
# --------
model = ImageRNN(batch_size, N_INPUTS, N_NEURONS, N_OUTPUT, N_LAYERS).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 初始化模型的weight
model.basic_rnn.weight_hh_l0.data = torch.eye(n=N_NEURONS, m=N_NEURONS, out=None).to(device)
model.basic_rnn.weight_hh_l1.data = torch.eye(n=N_NEURONS, m=N_NEURONS, out=None).to(device)
model.basic_rnn.weight_hh_l2.data = torch.eye(n=N_NEURONS, m=N_NEURONS, out=None).to(device)


def get_accuracy(logit, target, batch_size):
    """最后用来计算模型的准确率
    """
    corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
    accuracy = 100.0 * corrects/batch_size
    return accuracy.item()


# ---------
# 开始训练
# ---------
for epoch in range(N_EPHOCS):
    train_running_loss = 0.0
    train_acc = 0.0
    model.train()
    # trainging round
    for i, data in enumerate(train_loader):
        optimizer.zero_grad()
        # reset hidden states
        model.hidden = model.init_hidden()
        # get inputs
        inputs, labels = data
        inputs = inputs.view(-1, 28, 28).to(device)
        labels = labels.to(device)
        # forward+backward+optimize
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        train_running_loss = train_running_loss + loss.detach().item()
        train_acc = train_acc + get_accuracy(outputs, labels, batch_size)
    model.eval()
    print('Epoch : {:0>2d} | Loss : {:<6.4f} | Train Accuracy : {:<6.2f}%'.format(epoch, train_running_loss/i, train_acc/i))


# ----------------------------------------
# Computer accuracy on the testing dataset
# ----------------------------------------
test_acc = 0.0
for i,data in enumerate(test_loader,0):
    inputs, labels = data
    labels = labels.to(device)
    inputs = inputs.view(-1,28,28).to(device)
    outputs = model(inputs)
    thisBatchAcc = get_accuracy(outputs, labels, batch_size)
    print("Batch:{:0>2d}, Accuracy : {:<6.4f}%".format(i,thisBatchAcc))
    test_acc = test_acc + thisBatchAcc
print('============平均准确率===========')
print('Test Accuracy : {:<6.4f}%'.format(test_acc/i))
"""
Epoch : 00 | Loss : 0.6336 | Train Accuracy : 79.32 %
Epoch : 01 | Loss : 0.2363 | Train Accuracy : 93.00 %
Epoch : 02 | Loss : 0.1852 | Train Accuracy : 94.63 %
Epoch : 03 | Loss : 0.1516 | Train Accuracy : 95.69 %
Epoch : 04 | Loss : 0.1338 | Train Accuracy : 96.13 %
Epoch : 05 | Loss : 0.1198 | Train Accuracy : 96.67 %
Epoch : 06 | Loss : 0.1254 | Train Accuracy : 96.46 %
Epoch : 07 | Loss : 0.1128 | Train Accuracy : 96.88 %
Epoch : 08 | Loss : 0.1059 | Train Accuracy : 97.09 %
Epoch : 09 | Loss : 0.1048 | Train Accuracy : 97.10 %
Batch:00, Accuracy : 98.4375%
Batch:01, Accuracy : 98.4375%
Batch:02, Accuracy : 95.3125%
Batch:03, Accuracy : 98.4375%
Batch:04, Accuracy : 96.8750%
Batch:05, Accuracy : 93.7500%
Batch:06, Accuracy : 97.6562%
Batch:07, Accuracy : 95.3125%
Batch:08, Accuracy : 94.5312%
Batch:09, Accuracy : 92.9688%
Batch:10, Accuracy : 96.0938%
Batch:11, Accuracy : 96.0938%
Batch:12, Accuracy : 97.6562%
Batch:13, Accuracy : 96.8750%
Batch:14, Accuracy : 96.0938%
Batch:15, Accuracy : 95.3125%
Batch:16, Accuracy : 95.3125%
Batch:17, Accuracy : 96.0938%
Batch:18, Accuracy : 96.0938%
Batch:19, Accuracy : 97.6562%
Batch:20, Accuracy : 97.6562%
Batch:21, Accuracy : 98.4375%
Batch:22, Accuracy : 96.0938%
Batch:23, Accuracy : 96.8750%
Batch:24, Accuracy : 97.6562%
Batch:25, Accuracy : 99.2188%
Batch:26, Accuracy : 96.0938%
Batch:27, Accuracy : 94.5312%
Batch:28, Accuracy : 98.4375%
Batch:29, Accuracy : 94.5312%
Batch:30, Accuracy : 96.0938%
Batch:31, Accuracy : 93.7500%
Batch:32, Accuracy : 96.8750%
Batch:33, Accuracy : 96.0938%
Batch:34, Accuracy : 95.3125%
Batch:35, Accuracy : 96.8750%
Batch:36, Accuracy : 97.6562%
Batch:37, Accuracy : 93.7500%
Batch:38, Accuracy : 94.5312%
Batch:39, Accuracy : 100.0000%
Batch:40, Accuracy : 99.2188%
Batch:41, Accuracy : 100.0000%
Batch:42, Accuracy : 98.4375%
Batch:43, Accuracy : 98.4375%
Batch:44, Accuracy : 96.8750%
Batch:45, Accuracy : 99.2188%
Batch:46, Accuracy : 96.0938%
Batch:47, Accuracy : 98.4375%
Batch:48, Accuracy : 97.6562%
Batch:49, Accuracy : 100.0000%
Batch:50, Accuracy : 99.2188%
Batch:51, Accuracy : 91.4062%
Batch:52, Accuracy : 96.8750%
Batch:53, Accuracy : 99.2188%
Batch:54, Accuracy : 99.2188%
Batch:55, Accuracy : 100.0000%
Batch:56, Accuracy : 98.4375%
Batch:57, Accuracy : 98.4375%
Batch:58, Accuracy : 97.6562%
Batch:59, Accuracy : 100.0000%
Batch:60, Accuracy : 99.2188%
Batch:61, Accuracy : 96.0938%
Batch:62, Accuracy : 100.0000%
Batch:63, Accuracy : 97.6562%
Batch:64, Accuracy : 97.6562%
Batch:65, Accuracy : 96.8750%
Batch:66, Accuracy : 98.4375%
Batch:67, Accuracy : 100.0000%
Batch:68, Accuracy : 100.0000%
Batch:69, Accuracy : 100.0000%
Batch:70, Accuracy : 96.8750%
Batch:71, Accuracy : 98.4375%
Batch:72, Accuracy : 100.0000%
Batch:73, Accuracy : 99.2188%
Batch:74, Accuracy : 100.0000%
Batch:75, Accuracy : 96.0938%
Batch:76, Accuracy : 95.3125%
Batch:77, Accuracy : 96.8750%
Batch:78, Accuracy : 12.5000%
============平均准确率===========
Test Accuracy : 97.4559%
# """


# 定义hook
class SaveFeatures():
    """注册hook和移除hook
    """
    def __init__(self, module):
        self.hook = module.register_forward_hook(self.hook_fn)
    def hook_fn(self, module, input, output):
        self.features = output
    def close(self):
        self.hook.remove()

# 绑定到model上
activations = SaveFeatures(model.basic_rnn)


# 定义数据
dataiter = iter(train_loader)
images, labels = dataiter.next()

# 前向传播
model.hidden = model.init_hidden()
logits = model(images.view(-1, 28, 28).to(device))
activations.close()  # 移除hook

# 这个是 28(step)*128(batch_size)*150(hidden_size)
print(activations.features[0].shape)
# torch.Size([28, 128, 150])
print(activations.features[0][-1].shape)
# torch.Size([128, 150])

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1916591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

特斯拉的人形机器人最新展示,穿戴遥操作示教的机器人学习!

在机器人领域&#xff0c;特斯拉的人形机器人一直备受关注。2021 年&#xff0c;在「特斯拉 AI 日」上&#xff0c;马斯克发布了特斯拉的通用机器人计划&#xff0c;并用图片展示了人形机器人 Tesla Bot 的大致形态。但当时的 Tesla Bot 只是个概念&#xff0c;动作展示部分是由…

C++基础学习笔记

1.命名空间(namespace) 1.什么是命名空间&命名空间的作用 1.在C/C中&#xff0c;变量、函数、类都是大量存在的&#xff0c;这些变量等的名称将都存在于全局作用域中&#xff0c;就会导致很多的命名冲突等。使用命名空间的目的就是对标识符的名称进行本地化&#xff0c;以…

springboot中通过jwt令牌校验以及前端token请求头进行登录拦截实战

前言 大家从b站大学学习的项目侧重点好像都在基础功能的实现上&#xff0c;反而一个项目最根本的登录拦截请求接口都不会写&#xff0c;怎么拦截&#xff1f;为什么拦截&#xff1f;只知道用户登录时我后端会返回一个token&#xff0c;这个token是怎么生成的&#xff0c;我把它…

YOLOv10改进 | Conv篇 | 全新的SOATA轻量化下采样操作ADown(参数量下降百分之二十,附手撕结构图)

一、本文介绍 本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的ADown模块来改进我们的Conv模块&#xff0c;其中YOLOv9针对于这个模块并没有介绍&#xff0c;只是在其项目文件中用到了&#xff0c;我将其整理出来用于我们的YOLOv10的项目&#xff0c;经…

【大模型】微调实战—使用 ORPO 微调 Llama 3

ORPO 是一种新颖微调&#xff08;fine-tuning&#xff09;技术&#xff0c;它将传统的监督微调&#xff08;supervised fine-tuning&#xff09;和偏好对齐&#xff08;preference alignment&#xff09;阶段合并为一个过程。这减少了训练所需的计算资源和时间。此外&#xff0…

【计算机毕业设计】012基于微信小程序的科创微应用平台

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

华为ensp实现防火墙的区域管理与用户认证

实验环境 基于该总公司内网&#xff0c;实现图片所在要求 后文配置请以本图为准 接口配置与网卡配置 1、创建vlan 2、防火墙g0/0/0与云页面登录 登录admin,密码Admin123&#xff0c;自行更改新密码 更改g0/0/0口ip&#xff0c;敲下命令service-manage all permit 网卡配置…

彩虹小插画:成都亚恒丰创教育科技有限公司

彩虹小插画&#xff1a;色彩斑斓的梦幻世界 在繁忙的生活节奏中&#xff0c;总有一抹温柔的色彩能悄然触动心弦&#xff0c;那就是彩虹小插画带来的梦幻与宁静。彩虹&#xff0c;这一自然界的奇迹&#xff0c;被艺术家们巧妙地融入小巧精致的插画之中&#xff0c;不仅捕捉了瞬…

3D线上展示技术如何应用到汽车营销中?有哪些优势?

传统的汽车销售主要是通过实体店面展示汽车&#xff0c;但这样的展示方式成本高昂&#xff0c;而且还有空间限制。近年来&#xff0c;随着互联网的不断发展&#xff0c;线上看车逐渐成为当下年轻消费群体的看车新选择&#xff0c;并且线上看车正在从2D平面转向3D立体体验。 一、…

three完全开源扩展案例01-三角形渐变

演示地址 import * as THREE from three import { OrbitControls } from three/examples/jsm/controls/OrbitControls.jsconst box document.getElementById(box)const scene new THREE.Scene()const camera new THREE.PerspectiveCamera(75, box.clientWidth / box.client…

VirtualBox NAT网络模式

设置网络模式 右键网络设置 查看此时IP SSH连接 端口转发设置 ssh连接 samba文件共享 虚拟机上samba服务启动运行了&#xff0c;但由于windows无法连接虚拟机IP&#xff0c;即samba访问的入口堵了&#xff0c;无法像访问本地磁盘一样通过samba通道访问虚拟机 替代方案——多…

自定义在线活动报名表单小程序源码系统 源代码+搭建部署教程 可二次定制开发

系统概述 在数字化时代&#xff0c;线上活动成为连接用户与组织的重要桥梁。为了高效地管理活动报名流程&#xff0c;一款灵活、易用的在线活动报名表单小程序显得尤为重要。本文旨在为开发者提供一套全面的解决方案&#xff0c;包括自定义在线活动报名表单小程序的源代码分析…

YOLOv10改进 | 损失函数篇 | SlideLoss、FocalLoss、VFLoss分类损失函数助力细节涨点(全网最全)

一、本文介绍 本文给大家带来的是分类损失 SlideLoss、VFLoss、FocalLoss损失函数&#xff0c;我们之前看那的那些IoU都是边界框回归损失&#xff0c;和本文的修改内容并不冲突&#xff0c;所以大家可以知道损失函数分为两种一种是分类损失另一种是边界框回归损失&#xff0c;…

推荐算法——MRR

定义&#xff1a; MRR计算的是第一个正确答案的排名的倒数&#xff0c;并对所有查询取平均值。它衡量了模型在排序结果中快速找到正确答案的能力。 其中&#xff1a; Q 是查询的总数。ranki​ 是第 i 个查询中第一个正确答案的排名&#xff08;位置&#xff09;。如果第一个正…

jdk中自带的并发类

1、seamplore 信号量 countDownLaunch&#xff1a;等待所有线程都完成&#xff0c;主线程在执行 CyclicBarrirer 内存屏障 exchanger 线程之间交换数据 phaser 阶段协同器 阻塞队列

C语言 | Leetcode C语言题解之第227题基本计算题II

题目&#xff1a; 题解&#xff1a; int calculate(char* s) {int n strlen(s);int stk[n], top 0;char preSign ;int num 0;for (int i 0; i < n; i) {if (isdigit(s[i])) {num num * 10 (int)(s[i] - 0);}if (!isdigit(s[i]) && s[i] ! || i n - 1) {s…

Apache Dubbo与Nacos整合过程

Dubbo服务发现 Dubbo 提供的是一种 Client-Based 的服务发现机制&#xff0c;依赖第三方注册中心组件来协调服务发现过程&#xff0c;支持常用的注册中心如 Nacos、Consul、Zookeeper 等。 以下是 Dubbo 服务发现机制的基本工作原理图&#xff1a; 服务发现包含提供者、消费者…

快速测试electron环境是否安装成功

快速测试electron环境是否安装成功 测试代码正确运行的效果运行错误的效果v22.4.1 版本无法使用v20.15.1版本无法使用v18.20.4 版本无法使用 终极解决办法 测试代码 1.npx create-electron-app my-electron-app 2.cd my-electron-app 3.npm start 正确运行的效果 环境没问题…

如何给ubuntu虚拟机扩容

虚拟机设置 鼠标点击硬盘&#xff0c;弹出对话框后&#xff0c;点击扩展&#xff0c;输入扩展后的硬盘大小&#xff0c;我这里扩展到100G 安装工具 sudo apt-get install gparted 重新分区

边框插画:成都亚恒丰创教育科技有限公司

边框插画&#xff1a;艺术与生活的精致边界 在视觉艺术的广阔天地里&#xff0c;边框插画以其独特的魅力和细腻的表达方式&#xff0c;成为连接艺术与生活的一道精致边界。成都亚恒丰创教育科技有限公司它不仅仅是图像的外框装饰&#xff0c;更是情感、故事与创意的延伸&#…