数学建模美赛入门

news2025/1/13 10:21:00

数学建模需要的学科知识

  1. 高等数学+线性代数
    有很多算法的掌握是需要高等数学和线代的相关知识

    如:灰色预测模型需要微积分知识;神经网络需要用到导数知识;图论和层次分析法等都需要用到矩阵计算的相关知识等;

  2. 概率论与数理统计:
    当出现了不确定事件时,就必须引入概率来描述这一过程,这就使得在本来因为无知而产生不确定性时,我们用概率工具最优的表征和最优地解决了这一问题,然后用统计学的方法对各种数据进行分析、建模,从中挖掘出一些有利的信息,把他们的机理弄清楚,这些数据分析的工作完成后,往往是模型推广的第一步,也是关键的一步。

    方差分析、贝叶斯模型、随机过程、马尔科夫链、等都需要用到概率论相关知识

《数学模型》姜启源谢金星叶俊高等教育出版社:基础+方法+思想属于数学建模入门级教材,大量的数学建模案例可以提高对数模的认识和理解,但对于算法的学习并不系统
《数学建模算法与应用》司守奎 国防工业出版社:指导操作的教程这本书被奉为数学建模百科全书,目前学界在用的,成型的和发展中的方法、思想在本书中都有全面的介绍,而且很多实用的方法都附有源程序,如果不想做的很有创新性时,直接套用基本上就能解决很多国赛和美赛的题目。

美赛

在这里插入图片描述
在这里插入图片描述

美国大学生数学建模竞赛(MCM/ICM),简称“美赛”,由美国数学及其应用联合会主办,是最高的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛,

从2016年开始,每年美赛MCM/ICM各出3题,即总共六题。MCM俗称数学建模竞赛,有三道题:problemA, problemB和problemC。A题是连续型的题,B题是离散型的题,C题是数据处理的题,大都是会给出大量的表格数据进行数据处理。ICM俗称交叉学科竞赛,有三道题:problemD, problemE, problemF。与mcm不同的是,题目上会给你一些参考的数据,方便你尽快找到查数据的方向。problem D是运筹学和网络科学等类型的题目,problemE近往年都是关于环境方面的综合题目,现在改成了可持续性题目。problem F是政策的题目。

一 数学建模入门

在这里插入图片描述

1.1 模型

原型 (archetype):人们在现实世界里关心、研究或从事生产、管理的实际对象

模型(model)是指为了某个特定目的将原型的某一部分信息简缩、提炼构造的原型替
代物,是对所研究的系统、过程、事物或概念的一种表达形式,也可指根据
实验、图样放大或缩小而制作的样品,一般用于展览或实验或铸造机器零件
等用的模子。

1.2 数学建模

数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。

1.3 数学建模中的模型分类

  • 按所用的数学知识分类
    初等模型、几何模型、微积分模型、微分方程模型、图论模型、概率统计模型、规划论模型等。
  • 按所解决的问题的领域分类
    物理模型:自然科学领域内的问题
    非物理模型:经济模型、交通模型、人口模型、生态模型、环境模型、医学模型、社会学模型
  • 按所建模目的分类
    描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等
  • 按所模型的表现特性分类:
    确定模型、随机模型;
    静态模型、动态模型、离散模型、连续模型

1.4 数学建模的过程

美赛不建议是用spsspro(或者摘取其特征)
美赛最重要的三步:模型假设、摘要、灵敏度分析

在这里插入图片描述

  • 模型准备(包括数据搜集)
  • 模型假设(避免错误假设、常识性假设)
  • 模型建立(可以在复杂模型中组合模型使用流程图、创新模型使用伪代码)
  • 模型求解(不要直白地说用MATLAB等等求解)
  • 模型分析(与问题呼应,要有表层分析和深层分析)
  • 模型检验(对应模型假设)
    • 美赛看中灵敏度分析,对无法考虑的变量进行波动,灵敏度越强,稳定性就越弱
    • 误差分析:判断结果的正确性
  • 模型应用(模型的推广)

二 数学建模的实战经验

2.1 数学建模常见的赛题

在这里插入图片描述

总体来说,数学建模赛题类型主要分为:评价类、预测类和优化类三种,其中优化类是最常见的赛题类型,几乎每年的地区赛或国赛美赛等均有出题,必须要掌握并且熟悉。

2.1.1 评价类

在这里插入图片描述
在这里插入图片描述

赛题类型题目特点选择算法
评价类算法无数据支撑下指标定权,给指标制定权重;量化方案选择层次分析法
有数据支撑下指标定权与评价问题熵权法
分析各个因素对于结果的影响程度,或解决随时间变化的综合评价类问题灰色关联分析法
对评价结果进行排序;或评价的准则层太多,或准则层中的指标 (相对权重已知),则不能用层次分析法评价,要用优劣解距离法TOPSIS模型
在模糊环境下,考虑了多因素的影响,为了某种目的对一事物作出综合决策的方法。模糊综合评价法
指标较多,有训练数据支撑,并且需要对未知数据进行评价神经网络算法
多种投入和多种产出类评价问题数据包络法 (DEA)
秩和比方法常 用于评价多个指标的综合水平情况,医学研究领域应用尤为广泛。秩和比综合评价法

2.1.2 预测类

预测就是根据过去和现在估计未来,预测未来。统计预测属于预测方法研究范畴,即如何利用科学的统计方法对事物的未来发展进行定量推测
在这里插入图片描述
在这里插入图片描述

赛题类型题目特点选择算法
预测类算法单调递增的时间序列数据预测Logistic 预测模型
灰色预测模型
二次指数平滑预测
ARMA 时间序列预测模型
季节指数预测模型
BP 神经网络预测模型
周期性的时间序列数据预测ARMA 时间序列预测模型
季节指数预测模型
BP 神经网络预测模型
不规律的时间序列数据预测高斯回归预测模型
二次指数平滑预测
ARMA 时间序列预测模型
季节指数预测模型
多个指标的时间序列数据预测BP 神经网络模型
某一个系统在已知现在的条件下,系统未来时刻的情况只与当前有关,而与过去的历史无关;马尔可夫预测模型
自变量和因变量之间有逻辑相关性回归分析预测模型

2.1.3 优化类

优化类问题是从所有可能方案中选择最合理的方案以达到最优目标。在各种科学问题、工程问题、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获(比如保险)。
在这里插入图片描述
在这里插入图片描述

赛题类型题目特点选择算法
优化类算法目标函数和的束条件均为线性线性规划模型
决策变量取值被限制为整数或 0,1整数规划或 0-1 规划
以时间为划分阶段的动态过程优化问题动态优化模型
目标函数或约束条件中包括非线性函数非线性规划模型
目标函数不唯一, 即同时存在多个目标函数多目标规划模型
目标函数为凸函数时,求解算法选择基于梯度的求解算法最速下降法
随机梯度下降
拟牛顿法
目标函数为非凸函数时,求解算法选择智能优化算法粒子群算法
模拟退火
遗传算法
智能优化:决策变量为连续变量粒子群算法
智能优化:决策变量为离散变量遗传算法
智能优化:决策变量为离散变量模拟退火

2.2 数据预处理

赛题类型题目特点选择算法
数据预处理数据中存在缺失值拉格朗日插值法和牛顿插值法
数据中存在异常值利用正态分布3σ原则或画箱型图检测异常值
数据需要归一化处理标准差法、极值差法、功效系数法等
数据中存在分类变量独热编码、标签编码等
需要将连续变量进行离散化等宽法、等频法、基于聚类的思想等
数据维度过高,需要对数据数据进行 降维处理PCA 主成分分析法、T-SNE 降维算法、UMAP 降维法等

2.3 相关性分析

赛题类型题目特点选择算法
相关性分析离散变量和离散变量的相关性分析卡方检验
数据中存在异常值协方差、Pearson 相关系数、spearman 相关系数
数据需要归一化处理标准差法、极值差法、功效系数法等
数据中存在分类变量独热编码、标签编码等
需要将连续变量进行离散化等宽法、等频法、基于聚类的思想等
数据维度过高,需要对数据数据进行 降维处理PCA 主成分分析法、T-SNE 降维算法、UMAP 降维法等

2.4 分类问题

赛题类型题目特点选择算法
分类问题无监督聚类(无训练数据) K-Means 算法
层次聚类算法
高斯混合聚类模型
SOM 自组织神经网络
监督聚类(有训练数据) KNN 聚类模型
BP 神经网络分类模型
决策树分类模型
朴素贝叶斯分类等
图与网络两个指定顶点之间的最短路径Dijkstra 模型
每对顶点之间的最短路径Floyd 模型
TSP 旅行商问题图+规划模型
微分方程研究问题较为复杂的变量,并且变量间满足某些基本规律 人口模型
战争模型
传染病模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1911548.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于SpringBoot构造超简易QQ邮件服务发送 第二版

目录 追加 邮箱附件 添加依赖 编码 测试 第二版的更新点是追加了 邮箱附件功能 ( 后期追加定时任务 ) 基于SpringBoot构造超简易QQ邮件服务发送(分离-图解-新手) 第一版 追加 邮箱附件 添加依赖 <!-- 电子邮件 --><dependency><groupId>org.spri…

后端登录校验——Filter过滤器和Interceptor拦截器

一、Filter过滤器 前面我们学会了最先进的会话跟踪技术jwt令牌&#xff0c;那么我们要让用户使用某些功能时就要根据jwt令牌来验证用户身份&#xff0c;来决定他是否登陆了、让不让用户访问这个页面&#xff08;或功能&#xff09; 但是这样一来&#xff0c;没发一个请求&…

解决打印PDF文本不清楚的处理办法

之前打印PDF格式的电子书&#xff0c;不清晰&#xff0c;影响看书的心情&#xff0c;有时看到打印的书的质量&#xff0c;根本不想看&#xff0c;今天在打印一本页数不多&#xff0c;但PDF格式的书感觉也不太清楚&#xff0c;我想应该有办法解决&#xff0c;我使用的是解决福昕…

实时监测、智能预警:电缆光纤测温系统|原理、应用与前景

实时监测、智能预警&#xff1a;电缆光纤测温系统|原理、应用与前景 电缆光纤测温系统&#xff0c;作为现代电力系统中不可或缺的一部分&#xff0c;以其独特的优势在电缆安全监控领域发挥着日益重要的作用。该系统利用光纤传感技术&#xff0c;实时监测电缆的运行温度&#x…

【LeetCode刷题笔记】LeetCode.11.盛最多水的容器

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; 更多算法知识专栏&#xff1a;算法分析&#x1f525; 给大家跳段街舞感谢…

KIVY Button¶

Button — Kivy 2.3.0 documentation Button Jump to API ⇓ Module: kivy.uix.button Added in 1.0.0 The Button is a Label with associated actions that are triggered when the button is pressed (or released after a click/touch). To configure the button, the s…

c++入门基础篇(上)

目录 前言&#xff1a; 1.c&#xff0b;&#xff0b;的第一个程序 2.命名空间 2.1 namespace的定义 2.2 命名空间使用 3.c&#xff0b;&#xff0b;输入&输出 4.缺省参数 5.函数重载 前言&#xff1a; 我们在之前学完了c语言的大部分语法知识&#xff0c;是不是意…

GraphRAG——一个基于图的检索增强生成的开源项目【送源码】

GraphRAG 最近几天&#xff0c;微软团队开源了GraphRAG&#xff0c;这是一种基于图&#xff08;Graph&#xff09;的检索增强生成方法。 先说说RAG吧&#xff0c;检索增强生成&#xff0c;相当于是从一个给定好的知识库中进行检索&#xff0c;接入LLM模型&#xff0c;让模型生…

数据结构——顺序表【C】

顺序表 1. 顺序表的概念以及结构1.1概念1.2静态顺序表和动态顺序表 2. 顺序表接口模拟实现接口总览2.1 初始化数据和销毁容器 2.2 顺序表的尾插和尾删2.3 头插和头删2.4 任意位置插入和删除数据2.5 查找数据 3. 顺序表的问题 &#xff1a; 1. 顺序表的概念以及结构 1.1概念 顺…

无缝协作:如何实现VMware与Ubuntu虚拟机的剪切板共享!

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 剪贴板共享 📒📝 VMware设置📝 安装VMware Tools或open-vm-tools📝 验证剪贴板共享功能⚓️ 相关链接 🚓️📖 介绍 📖 无缝的剪贴板共享是提高工作效率的关键。在VMware和Ubuntu虚拟机的协同工作中,能够直接在宿…

【鸿蒙学习笔记】属性学习迭代笔记

这里写目录标题 TextImageColumnRow Text Entry Component struct PracExample {build() {Row() {Text(文本描述).fontSize(40)// 字体大小.fontWeight(FontWeight.Bold)// 加粗.fontColor(Color.Blue)// 字体颜色.backgroundColor(Color.Red)// 背景颜色.width(50%)// 组件宽…

arp缓存中毒实验

文章目录 一、相关知识1.什么是arp&#xff08;地址解析协议&#xff09;2.什么是免费arp&#xff08;1&#xff09;简介&#xff08;2&#xff09;主要应用&#xff08;3&#xff09;代码 3.什么是arp缓存中毒&#xff08;1&#xff09;简介&#xff08;2&#xff09;过程&…

ubuntu使用kubeadm搭建k8s集群

一、卸载k8s kubeadm reset -f modprobe -r ipip lsmod rm -rf ~/.kube/ rm -rf /etc/kubernetes/ rm -rf /etc/systemd/system/kubelet.service.d rm -rf /etc/systemd/system/kubelet.service rm -rf /usr/bin/kube* rm -rf /etc/cni rm -rf /opt/cni rm -rf /var/lib/etcd …

第5章-组合序列类型

#全部是重点知识&#xff0c;必须会。 了解序列和索引|的相关概念 掌握序列的相关操作 掌握列表的相关操作 掌握元组的相关操作 掌握字典的相关操作 掌握集合的相关操作1&#xff0c;序列和索引 1&#xff0c;序列是一个用于存储多个值的连续空间&#xff0c;每一个值都对应一…

python实现建议股票计算器

name 无忧传播 stock_price 19.99 stock_code "003032" stock_rise 1.2 day 7print(f"公司&#xff1a;{name},代码&#xff1a;{stock_code},当前股价&#xff1a;{stock_price}")print("增长系数是&#xff1a;%f&#xff0c;经过%d天后&am…

Git本地仓库的搭建与使用

目录 一、前言 二、Linux下搭建 git 仓库 三、Windows下搭建 git 仓库 一、前言 做项目时&#xff0c;我们常常需要将自己的代码进行托管&#xff0c;但有时候 Github 的速度属实叫人流泪。有的人会选择 Gitee 等进行托管代码&#xff0c;这当然是可以的。那如果没有其他代码…

【VUE基础】VUE3第一节—vite创建vue3工程

什么是VUE Vue (发音为 /vjuː/&#xff0c;类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建&#xff0c;并提供了一套声明式的、组件化的编程模型&#xff0c;帮助你高效地开发用户界面。无论是简单还是复杂的界面&#xff0…

藏汉翻译通作为翻译软件的优势有哪些?

藏汉翻译通作为一款专业的藏汉双语翻译软件&#xff0c;具有以下优势&#xff1a; 人工智能技术应用&#xff1a;藏汉翻译通利用了人工智能翻译和语音识别合成技术&#xff0c;提供智能藏文翻译服务。 高准确率&#xff1a;文字识别准确率可达90%&#xff0c;语音识别转化文字…

IDEA新建项目并撰写Java代码的方法

本文介绍在IntelliJ IDEA软件中&#xff0c;新建项目或打开已有项目&#xff0c;并撰写Java代码的具体方法&#xff1b;Groovy等语言的代码也可以基于这种方法来撰写。 在之前的文章IntelliJ IDEA社区版在Windows电脑中的下载、安装方法&#xff08;https://blog.csdn.net/zheb…

Echarts水球图(liquidFill)添加文字

效果 代码 {type: liquidFill,shape: shapes[0].value,radius: 90%,data: [{name: 独立百货,value: 0}],center: [50%, 50%],color: [{type: linear,x: 0,y: 0,x2: 0,y2: 1,colorStops: [{offset: 0,color: #446bf5},{offset: 1,color: #2ca3e2}],globalCoord: false}],backgro…