目标
- 通过键盘控制一个海龟(领航龟)的移动,其余生成的海龟通过监听实现追踪
- 定期获取领航龟和其余龟的坐标信息,通过广播告知其余龟,进行相应移动
- 其余龟负责监听
疑惑点(已解决)
int main(int argc, char** argv) 是 C 和 C++ 程序中主函数 (main) 的常见定义形式。这个函数是程序的入口点,操作系统在启动程序时首先调用 main 函数。
参数解释:
int argc:代表 “argument count”,是一个整型变量,表示传递给程序的命令行参数的数量(包括程序名称本身)。例如,如果你的程序名为 myprog,并且在命令行下以 myprog arg1 arg2 的方式运行,那么 argc 将为 3(程序名 myprog 计为第一个参数)。
char** argv:代表 “argument vector”,是一个字符指针数组的指针,每个元素都是指向一个字符串的指针。这个数组包含了所有通过命令行传递给程序的参数。argv[0] 总是指向程序的名称,而 argv[1]、argv[2] 等分别指向后续的各个参数。每个参数都是一个以空字符 ‘\0’ 结尾的字符串。
main 函数返回类型为 int,通常用来表示程序的退出状态。返回值为 0 表示程序正常结束,非零值则表示有错误发生,具体的数值可以根据需要定义,但通常的约定是返回负数或非零正数表示异常终止。
生成海龟
生成执行文件及相关依赖
add_executable(fllow_broadcaster src/turtle_broadcaster.cpp)
target_link_libraries(fllow_broadcaster ${catkin_LIBRARIES})
add_executable(fllow_listener src/turtle_listener.cpp)
target_link_libraries(fllow_listener ${catkin_LIBRARIES})
add_executable(create_turtle src/spawn_turtle.cpp)
target_link_libraries(create_turtle ${catkin_LIBRARIES})
xml配置
<launch>
<node pkg="turtlesim" type="turtlesim_node" name="sim" />
<node pkg="turtlesim" type="turtle_teleop_key" name="teleop" output="screen" />
<!-- 生成多个海龟,这里的type指的是可执行文件的自定义名字-->
<node pkg="Fllowing_test" type="create_turtle" name="c_turtle" args="a b c d e f g" />
<!-- 构建多个海龟广播-->
<node pkg="Fllowing_test" type="fllow_broadcaster" args="turtle1" name="turtle1_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="a" name="turtle2_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="b" name="turtle3_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="c" name="turtle4_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="d" name="turtle5_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="e" name="turtle6_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="f" name="turtle7_broadcaster" />
<node pkg="Fllowing_test" type="fllow_broadcaster" args="g" name="turtle8_broadcaster" />
<!-- 设置多个海龟之间的监听关系 -->
<node pkg="Fllowing_test" type="fllow_listener" args="turtle1 a" name="turtle1_tf_listener" />
<node pkg="Fllowing_test" type="fllow_listener" args="a b" name="turtle2_tf_listener" />
<node pkg="Fllowing_test" type="fllow_listener" args="b c" name="turtle3_tf_listener" />
<node pkg="Fllowing_test" type="fllow_listener" args="c d" name="turtle4_tf_listener" />
<node pkg="Fllowing_test" type="fllow_listener" args="d e" name="turtle5_tf_listener" />
<node pkg="Fllowing_test" type="fllow_listener" args="e f" name="turtle6_tf_listener" />
<node pkg="Fllowing_test" type="fllow_listener" args="f g" name="turtle7_tf_listener" />
</launch>
spawn_turtle.cpp
- 测试指令:rosrun Fllowing_test create_turtle a b c d e (后续字母 + i 是自定义海龟名字)
#include <ros/ros.h>
#include <turtlesim/Spawn.h>
int main(int argc ,char **argv){
int i;
if(argc < 2) {
ROS_ERROR("Turtle's name can't be empty");
return -1;
}
ros::init(argc,argv,"Create_turtle");
ros::NodeHandle node;
ros::service::waitForService("spawn");
ros::ServiceClient create_turtle_client = node.serviceClient<turtlesim::Spawn>("spawn");
turtlesim::Spawn srv; //用于配置海龟信息
for(i = 1;i < argc;++i){
srv.request.x = i;
srv.request.y = i;
srv.request.theta = 0;
srv.request.name = *(argv+i);
create_turtle_client.call(srv); //发送请求生成海龟的服务
}
return 0;
}
turtle_broadcaster
// 例程产生 tf 数据,并计算、发布 turtle2的速度指令
#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <turtlesim/Pose.h>
std::string turtle_name;
//pose回调函数
void poseCallback(const turtlesim::PoseConstPtr& msg){
//创建tf的广播器
static tf::TransformBroadcaster br;
//初始化tf数据
tf::Transform transform;
transform.setOrigin(tf::Vector3(msg->x,msg->y,0.0)); //当前海龟的坐标信息
tf::Quaternion q;
q.setRPY(0,0,msg->theta); //当前海龟的RPY旋转状态
transform.setRotation(q);
//广播world与海龟坐标系之间的tf数据
br.sendTransform(tf::StampedTransform(transform,ros::Time::now(),"world",turtle_name));
}
int main(int argc,char** argv){
ros::init(argc,argv,"turtle_broadcaster");
//输入参数作为海龟的名字
if(argc < 2){
ROS_ERROR("need turtle name as argument!");
return -1;
}
turtle_name = argv[1]; //argv[0]是程序文件名,argv[1]以及后续才是参数列表
//订阅海龟位置
ros::NodeHandle node;
ros::Subscriber sub = node.subscribe(turtle_name+"/pose",10,&poseCallback);
// 循环等待回调函数
ros::spin();
return 0;
}
turtle_listener.cpp
#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <turtlesim/Spawn.h>
#include <geometry_msgs/Twist.h>
#include <string>
using namespace std;
int main(int argc,char **argv){
//拼接海龟驱动指令
string driver_cmd("/");
driver_cmd.append(argv[2]);
driver_cmd.append("/cmd_vel");
if(argc < 3){
ROS_ERROR("need turtle name as argument!");
return -1;
}
ros::init(argc,argv,"turtle_listener");
ros::NodeHandle node;
//请求产生海龟对象
ros::service::waitForService("/spawn");
ros::ServiceClient turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
turtlesim::Spawn srv_add_turtle;
turtle.call(srv_add_turtle);
//创建发布速度控制指令的发布者,控制海龟移动的
ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>(driver_cmd,10);
//创建tf的监听器
tf::TransformListener listener;
ros::Rate rate(10.0);
while(node.ok()){
//获取坐标系之间的tf数据
tf::StampedTransform transform;
try{
// 判断坐标系中是否存在相应海龟节点,持续三秒,向广播者发送位置信息请求
listener.waitForTransform(argv[2],argv[1],ros::Time(0),ros::Duration(3.0));
// 获取实时位置,将四元数存到transform变量中
listener.lookupTransform(argv[2],argv[1],ros::Time(0),transform);
}
catch(tf::TransformException &ex){
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
continue;
}
//根据turtle1与turtle2坐标系之间的位置关系,配置移动信息,并发布turtle2的速度指令
geometry_msgs::Twist vel_msg;
vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),transform.getOrigin().x());
vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(),2) + pow(transform.getOrigin().y(),2));
turtle_vel.publish(vel_msg);
rate.sleep();
}
return 0;
}