【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】

news2024/11/25 20:33:23

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】


目录

  • 【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
  • 一、设计要求
  • 二、设计思路
    • 数据说明
  • 三、可视化分析
  • 四、数据分析模型
    • 1. 数据加载与初步探索
    • 2. 数据预处理
    • 3. 特征工程
    • 5. 数据集划分
    • 6. 模型预测与评估


一、设计要求

数据来源说明:数据集包含两个表格:

  • mum_baby.csv(婴儿信息)

    • user_id:用户ID(文本)
    • birthday:出生日期(日期)
    • gender:性别(文本,0: 男,1: 女)
  • mum_baby_trade_history.csv(交易历史)

    • user_id:用户ID(文本)
    • auction_id:商品编码(文本)
    • cat_id:商品二级分类(文本)
    • cat1:商品一级分类(文本)
    • property:商品属性(文本)
    • buy_mount:购买数据(数值)
    • day:购买日期(日期)
  1. 明确问题:提出了多个分析问题,包括:

    • 年龄段的分布情况?
    • 哪一类商品最受欢迎?
    • 不同性别对商品的选择情况?
    • 同一商品大类下不同分类的销售程度?
    • 用户购商品的季节性偏好?
    • 每个月母婴商品的销量变化如何?
    • 各种母婴商品的销量如何?
    • 婴儿年龄对母婴商品的销量有什么影响?
    • 婴儿性别对母婴商品的销量有什么影响?
  2. 分析思路提示:从用户、用户两个维度展开分析,建立模型预测。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈


二、设计思路

数据说明

  1. 婴儿信息表(mum_baby.csv)

该表格包含了用户的基本信息,包括用户ID、出生日期和性别。具体字段如下:

  • user_id:用户ID(文本类型),唯一标识每个用户。
  • birthday:出生日期(日期类型),表示用户的出生日期。
  • gender:性别(文本类型),其中0表示男性,1表示女性。

在这里插入图片描述
2. 交易历史表(mum_baby_trade_history.csv)

该表格记录了用户的商品交易信息,包括商品编码、分类、属性、购买数量和购买日期。具体字段如下:

  • user_id:用户ID(文本类型),唯一标识每个用户,与婴儿信息表中的user_id对应。
  • auction_id:商品编码(文本类型),唯一标识每个商品。
  • cat_id:商品二级分类(文本类型),表示商品的二级分类。
  • cat1:商品一级分类(文本类型),表示商品的一级分类。
  • property:商品属性(文本类型),包含多个属性的组合。
  • buy_mount:购买数量(数值类型),表示用户购买该商品的数量。
  • day:购买日期(日期类型),表示交易发生的日期。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈


三、可视化分析

3.1. 年龄段的分布情况(箱线图)

   plt.figure(figsize=(10, 6))
   sns.boxplot(x=data['age'])
   plt.xlabel('年龄')
   plt.title('年龄段的分布情况(箱线图)')
   plt.show()

箱线图用于展示用户年龄段的分布情况。通过箱线图,可以看到年龄的中位数、四分位数、极值以及可能存在的异常值。这有助于理解不同年龄段的用户数量分布,从而为市场定位和营销策略提供依据。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

3.2. 最受欢迎的商品类别(环形图)
在这里插入图片描述
3.3. 性别对商品选择的影响(雷达图)
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

3.4 同一商品大类下不同分类的销售程度(散点图)

   plt.figure(figsize=(10, 6))
   sns.scatterplot(data=data, x='cat1', y='buy_mount', hue='cat_id', style='cat_id')
   plt.xlabel('商品一级分类')
   plt.ylabel('购买数量')
   plt.title('商品大类下不同分类的销售程度(散点图)')
   plt.show()

在这里插入图片描述
3.5. 用户购商品的季节性偏好(条形图)
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

3.6. 每个月母婴商品的销量变化(折线图)
在这里插入图片描述
3.7. 各种母婴商品的销量(饼状图)
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

3.8. 婴儿年龄对母婴商品销量的影响(箱线图)

   plt.figure(figsize=(10, 6))
   sns.boxplot(x=data['age'], y=data['buy_mount'])
   plt.xlabel('年龄')
   plt.ylabel('购买数量')
   plt.title('婴儿年龄对母婴商品销量的影响(箱线图)')
   plt.show()

在这里插入图片描述
3.9. 婴儿性别对母婴商品销量的影响(条形图)
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈


四、数据分析模型

在数据预处理阶段,代码首先将birthday和day字段转换为日期时间格式,然后计算用户的年龄。年龄的计算是通过购买日期和出生日期之间的天数差除以365得到的。接着,将性别和商品一级分类编码为数值类型,便于后续的机器学习建模。性别被编码为0和1,分别表示男性和女性;商品一级分类也被编码为数值类型。

特征提取方面,选择了用户的年龄、性别和商品一级分类作为特征变量(即自变量),将购买数量作为目标变量(即因变量)。通过对特征和目标变量之间的相关性分析,代码使用seaborn库绘制了相关性热力图,展示各特征与目标变量之间的相关性。这一步有助于识别对购买数量影响较大的特征,为模型优化提供参考。

接下来,代码将数据集拆分为训练集和测试集,其中80%的数据用于训练模型,20%的数据用于测试模型。使用scikit-learn库中的train_test_split函数进行数据拆分,确保训练集和测试集的分布一致性。

模型评估方面,代码使用了均方误差(MSE)和R²值来评估模型的性能。均方误差用于衡量预测值与真实值之间的平均误差,误差越小,模型性能越好;R²值用于衡量模型的解释力,数值越接近1,表示模型越能解释数据的变异性。通过计算MSE和R²值,可以判断模型的预测精度和可靠性。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

4.1 模型建立及分析

本项目旨在通过数据分析和机器学习技术,对阿里天池平台提供的婴幼儿商品交易数据进行深入研究,以帮助商家了解市场动态并做出科学决策

1. 数据加载与初步探索

baby_info = pd.read_csv('mum_baby.csv')
trade_history = pd.read_csv('mum_baby_trade_history.csv')

设计思路:首先,加载婴儿信息和交易历史数据。baby_info表包含用户的出生日期和性别信息,而trade_history表记录了商品的交易数据。通过加载这两个数据表,可以为后续的数据处理和分析提供基础。

2. 数据预处理

baby_info['birthday'] = pd.to_datetime(baby_info['birthday'], format='%Y%m%d')
trade_history['day'] = pd.to_datetime(trade_history['day'], format='%Y%m%d')

设计思路:将日期字段转换为日期时间格式,确保数据的一致性和可操作性。随后,将两个表基于用户ID进行合并,生成包含所有相关信息的完整数据集。这一步骤旨在整合用户的基本信息与其购买行为,为后续分析奠定基础。

3. 特征工程

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

data['age'] = (data['day'] - data['birthday']).dt.days // 365
data['gender'] = data['gender'].astype('category').cat.codes

设计思路:计算用户年龄并将分类变量(性别和商品分类)编码为数值类型。这一步骤有助于将原始数据转换为适合模型训练的格式。特征工程是机器学习模型构建中的关键环节,通过提取有意义的特征,可以提升模型的预测能力。

5. 数据集划分

设计思路:将数据集划分为训练集和测试集,其中80%的数据用于训练模型,20%的数据用于评估模型。合理的数据集划分可以确保模型的泛化能力,并防止过拟合。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

6. 模型预测与评估

y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

使用测试集数据进行预测,并计算均方误差(MSE)和R²值来评估模型性能。MSE衡量预测值与真实值之间的平均误差,R²值表示模型解释数据变异性的能力。这些评估指标可以帮助判断模型的预测精度和可靠性。
在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

在这里插入图片描述

本项目通过数据加载与预处理、特征工程、数据可视化、模型训练与评估、预测结果可视化等步骤,系统地展示了如何利用数据科学和机器学习技术对电子商务平台上的婴幼儿商品交易数据进行分析和预测。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 母婴数据预测 ” 获取。👈👈👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903953.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue-cli 脚手架详细介绍

4 vue-cli 脚手架 1 脚手架介绍 vue-cli也叫vue脚手架,vue-cli是vue官方提供的一个全局命令工具,这个命令可以帮助我们快速的创建一个vue项目的基础架子。 脚手架:搭建好的一个架子,我们在架子上进行开发 开箱即用零配置基于webpack、webpac…

13 学习总结:指针 · 其一

目录 一、内存和地址 (一)内存 (二)内存单元 (三)地址 (四)拓展:CPU与内存的联系 二、指针变量和地址 (一)创建变量的本质 (二…

【MySQL】逻辑架构与存储引擎

一、逻辑架构 1、MySQL逻辑架构 我们可以根据上图来对sql的执行过程进行分析 第一步:客户端与服务器建立一个连接,从连接池中分配一个线程处理SQL语句第二步:SQL接口接受SQL指令第三步:如果是5.7版本,就会先去缓存中…

SpringMVC(2)——controller方法参数与html表单对应

controller方法参数与html表单对应 0. User实体类 import org.springframework.format.annotation.DateTimeFormat;import java.io.Serializable; import java.util.Date; import java.util.List; import java.util.Map;public class User implements Serializable {private …

期末考试结束,老师该如何私发成绩?

随着期末考试的落幕,校园里又恢复了往日的宁静。然而,对于老师们来说,这并不意味着工作的结束,相反,一系列繁琐的任务才刚刚开始。 成绩单的发放,就是其中一项让人头疼的工作。家长们焦急地等待着孩子的考试…

【全面讲解如何安装Jupyter Notebook!】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

springboot三层架构详细讲解

目录 springBoot三层架构0.简介1.各层架构1.1 Controller层1.2 Service层1.3 ServiceImpl1.4 Mapper1.5 Entity1.6 Mapper.xml 2.各层之间的联系2.1 Controller 与 Service2.2 Service 与 ServiceImpl2.3 Service 与 Mapper2.4 Mapper 与 Mapper.xml2.5 Service 与 Entity2.6 C…

【Spring Boot】关系映射开发(三):多对多映射

关系映射开发(三):多对多映射 1.创建实体1.1 创建 Student 实体1.2 创建 Teacher 实体 2.创建测试 在 多对多 关联关系中,只能通过 中间表 的方式进行映射,不能通过增加外键来实现。 注解 ManyToMany 用于关系的发出端…

【React Native优质开源项目】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

Nacos架构设计

Nacos1.X架构设计 Nacos2.X架构修改

Gitlab代码管理工具安装配置

前言: 没有真正的证书与域名建议使用httpip的方式在内网使用,不建议使用假的域名地址 一、安装前配置 #更改主机域名 hostnamectl set-hostname gitlab.dome.com bash #配置hosts 底部添加下面内容 vim /etc/hosts ############################ ip gi…

昇思25天学习打卡营第19天|Diffusion扩散模型

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com) Diffusion扩散模型 本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成…

【嵌入式DIY实例-ESP8266篇】-LCD ST7735显示BMP280传感器数据

LCD ST7735显示BMP280传感器数据 文章目录 LCD ST7735显示BMP280传感器数据1、硬件准备与接线2、代码实现本文介绍如何将 ESP8266 NodeMCU 板 (ESP-12E) 与 Bosch Sensortec 的 BMP280 气压和温度传感器连接。 NodeMCU 微控制器 (ESP8266EX) 从 BMP280 传感器读取温度和压力值,…

人工智能在病理组学虚拟染色中的应用|文献精析·24-07-07

小罗碎碎念 本期文献精析,分享的是一篇关于深度学习在虚拟染色技术中应用于组织学研究的综述。 角色姓名单位(中文)第一作者Leena Latonen东芬兰大学(QS-552)生物医学研究所通讯作者Pekka Ruusuvuori图尔库大学&#…

Raw Socket(一)实现TCP三次握手

实验环境: Windows物理机:192.168.1.4 WSL Ubuntu 20.04.6 LTS:172.19.32.196 Windows下的一个http服务器:HFS,大概长这个样子: 客户端就是Ubuntu,服务端就是这个…

2024年【危险化学品生产单位安全生产管理人员】考试总结及危险化学品生产单位安全生产管理人员考试试题

题库来源:安全生产模拟考试一点通公众号小程序 危险化学品生产单位安全生产管理人员考试总结是安全生产模拟考试一点通总题库中生成的一套危险化学品生产单位安全生产管理人员考试试题,安全生产模拟考试一点通上危险化学品生产单位安全生产管理人员作业…

6、Redis系统-数据结构-05-整数

五、整数集合(Intset) 整数集合是 Redis 中 Set 对象的底层实现之一。当一个 Set 对象只包含整数值元素,并且元素数量不大时,就会使用整数集合这个数据结构作为底层实现。整数集合通过紧凑的内存布局和升级机制,实现了…

保存在FinalShell服务器登录密码忘记了,如何快速获取到

一、从FinalShell获取服务器基本信息 如图操作会导出一个json文件,可以直接保存在桌面,或者其他位置 json格式如下: {"forwarding_auto_reconnect":false ,"custom_size":false ,"delete_time":0 ,"sec…

python读取指定文件夹下的图片(glob获取)

python读取指定文件夹下的图片(glob获取) 定义traverse_images函数,仅需要改变下根路径即可 glob是python中用来查找符合特定规则的文件路径名的函数 import os from glob import globdef traverse_images (folder_path):image_formats …

ComfyUI如何高效率使用多Lora

Efficient 工作流 {"last_node_id": 29,"last_link_id": 56,"nodes": [{"id": 26,"type": "LoRA Stacker","pos": [540,270],"size": {"0": 320,"1": 322},"flag…