Raw Socket(一)实现TCP三次握手

news2024/11/25 10:59:16

       实验环境:
       Windows物理机:192.168.1.4
       WSL Ubuntu 20.04.6 LTS:172.19.32.196
       Windows下的一个http服务器:HFS,大概长这个样子:
在这里插入图片描述
       客户端就是Ubuntu,服务端就是这个http服务器(下文称服务器或服务端),服务器ip通过参数传递给程序。

       源码在最后边。

       主函数程序分以下几个部分:
1.获取参数,并通过netlink通信选择网卡进行通信(实际Ubuntu只有一个网卡,ip为172.19.32.196),并初始化服务器和客户端的ip和端口。关于通过netlink通信选择网卡进行通信可以参见下面链接:
netlink通信——读取路由表获取通信网卡IP
部分代码:

	...
	// netlink通信
	uint32_t src_address = getLocalIPAddress(inet_addr(dst));
	...
	src_addr.sin_family = AF_INET;
	src_addr.sin_port = htons((uint16_t) getpid());  // 将当前进程ID作为源端口
	src_addr.sin_addr = *(struct in_addr *) &src_address;

	dst_addr.sin_family = AF_INET;
	dst_addr.sin_port = htons(HTTP_PORT);
	dst_addr.sin_addr.s_addr = inet_addr(dst);
	...

2.创建两个socket,发送socket和接收socket,绑定客户端(这步可要可不要,因为本例四元组是不变的),设置socket协议属性。
部分代码:

	...
	send_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
	recv_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);
	bind(recv_sock_fd, (const struct sockaddr *) &src_addr,
			sizeof(struct sockaddr_in)) < 0);
	int one = 1;
	setsockopt(recv_sock_fd, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one));
	...

       创建发送和接收套接字:
       AF_INET表示TCP/IP – IPv4协议族;
       SOCK_RAW表示套接字类型为原始套接字;
       第三个参数为protocol参数,IPPROTO_RAW表示开发人员可以自己构造和解析 IP 数据包,用这个作为发送套接字的协议类型,需要我们自己对发出的数据包进行封装,并计算校验和;IPPROTO_TCP表示TCP包,表示收到的数据包为TCP数据包。
       绑定客户端ip和端口:这步可不要,如上所说两方的ip和端口都是不变的。
       设置socket协议属性:setsockopt设置了接收套接字的属性,第二个参数是套接字选项,常用选项有:
       (1)套接字层级选项(SOL_SOCKET)
       SO_REUSEADDR:允许重用本地地址。
       SO_RCVBUF:设置接收缓冲区大小。
       SO_SNDBUF:设置发送缓冲区大小。
       SO_BROADCAST:允许发送广播消息。
       SO_KEEPALIVE:启用保活机制,检测连接是否有效。
       (2)IP 层选项(IPPROTO_IP)
       IP_TTL:设置 IP 数据报的生存时间(TTL)。
       IP_HDRINCL:指示应用程序提供 IP 头。
       (3)TCP 层选项(IPPROTO_TCP)
       TCP_NODELAY:禁用 Nagle 算法,减少延迟。
       TCP_MAXSEG:设置 TCP 最大分段大小。
       本例socket选项设置的是IP层选项IPPROTO_IP的IP_HDRINCL——表示接收的包包含IP头。

       

开始三次握手

connect_tcp(send_sock_fd, recv_sock_fd, &dst_addr, &src_addr);
//Blocking call
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
		struct sockaddr_in* src_addr)
{
	int ret = 0;

// Initialize the TCP Session State with the given details
	bzero(&tcp_state, sizeof(tcp_state__t));
	tcp_state.max_segment_size = MAX_CLIENT_SEGMENT_SIZE;    // 初始化MSS
	tcp_state.client_window_size = CLIENT_WINDOW_SIZE;       // 初始化拥塞窗口
	tcp_state.client_next_seq_num = STARTING_SEQUENCE;       // 客户端下个包的seq
	tcp_state.session_info.dst_addr = *dst_addr;             // 目的地址
	tcp_state.session_info.src_addr = *src_addr;             // 源地址
	tcp_state.session_info.recv_fd = recv_fd;                // 接收句柄
	tcp_state.session_info.send_fd = send_fd;                // 发送句柄
	tcp_state.syn_retries = 5;                               // 重传次数
	tcp_state.cwindow_size = 1;    // 拥塞窗口值
	initialize_mutex(&tcp_state.tcp_state_lock);
	initialize_mutex(&tcp_state.session_info.send_fd_lock);

	tcp_flags_t flags = {0};
	flags.ack = 1;
	flags.syn = 1;
	if (((ret = send_syn()) < 0) || ((ret = receive_syn_ack_segment(&flags)) < 0)
	                             || ((ret = send_ack_segment(0)) < 0))
	{
		printf("Failed to set up TCP Connection!!");
		ret = -1;
		goto EXIT;
	}
	tcp_state.tcp_current_state = ESTABLISHED;

	EXIT: return ret;
}

握手流程大概如下:
在这里插入图片描述
可以看到分为三步:
       1.发送SYN包,对应函数为:send_syn();
       create_packet()创建一个TCP包,这个函数很重要,实现的很巧妙,通过设置偏移的指向可以找到IP头、TCP头和数据。TCP的SYN标志肯定要设置为1,然后就是构造包头——build_packet_headers,具体做的就是封装TCP头,计算TCP检验和,封装IP头,计算检验和。TCP的状态转换图中,客户端发送SYN包后,其状态由CLOSED变为SYN_SENT,所以还要设置TCP状态:tcp_state.tcp_current_state = SYN_SENT;然后就可以发送数据包了,除了使用sendto发送数据,还要创建重传定时器,设置其回调函数,当SYN包发送后,超时时间内未收到回应,还需重传SYN包。所以还需要将发送的packet写入发送循环队列缓冲,超时后,从发送循环队列取出保存的数据重新发送,循环队列本篇不展开讲。
       2.接收SYN/ACK包,对应函数为receive_syn_ack_segment(&flags);
使用recvfrom函数接收数据,收到后需做一系列检验,如检验ip校验和,检验源目的端口和ip是否正确,检验TCP校验和,检验此包是否是重传包。然后还需要设置数据包中IP头、TCP头和数据的偏移指向。然后可以判断收到的包的SYN标志和ACK标志是否为1,判断是否是RST包。这些工作做完后,还需要处理这个SYN/ACK包,包括设置服务器下一个传来的包的seq,设置客户端下一个包的seq,更新服务器接收窗口的值,更新拥塞窗口值,从接收循环队列中删除此回应包(因为已经处理完了),释放为了接收此包而开辟的空间,更新MSS。
       3.发送ACK包,对应函数为send_ack_segment(0);
第三步很简单,发送回应,表示三次握手成功,参数为0表示FIN标志为0,即此包是个ACK包。设置TCP状态为ESTABLISHED。

那么结果如何呢,运行程序并使用wireshark抓包:
在这里插入图片描述

在这里插入图片描述
       可以看到,在发送SYN包并接收SYN/ACK后,客户端不知怎么的又发送了个RST包,然后才发送了ACK包,程序看似运行成功,但是实际上三次握手建立连接是失败的。
       这是什么原因呢?

       本程序是使用raw socket进行通信,并不是使用的系统调用,当客户端发来SYN/ACK后,操作系统先收到了这个包,然后检查本地是否有对应的(使用系统调用创建的)socket,一检查,没有,那么就会发送一个RST包,然后这个三次握手建立连接就失败了。。

       那么怎么解决的?

       因为此程序是实验学习为主,所以解决办法可以是使用iptables将本机发出的RST包丢掉,此时服务端不会收到客户端发来的RST包,本次连接就可以成功建立了!
实现的shell脚本:

#!/bin/sh

if ! iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP; then
    iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP
fi

./handshake "$@" 

       先检测iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP这条命令是否执行,未执行的话就执行一遍。

       查看结果:
在这里插入图片描述
       成功!

       最后,此程序只实现了三次握手,未实现四次挥手。
       源码
       run.sh

#!/bin/sh

if ! iptables -C OUTPUT -p tcp --tcp-flags RST RST -j DROP; then
    iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP
fi

./handshake "$@"

       Makefile

CFLAGS= -g -Werror -lrt -lpthread
CC=gcc

all:
	$(CC) handshake.c routing_table.c tcp_handler.c $(CFLAGS) -o handshake

clean:
	rm -rf handshake 

       handshake.c

#include "routing_table.h"
#include "tcp_handler.h"
#include <ctype.h>
#include <fcntl.h>
#include <unistd.h>

#define WRITE_BUFFER_SIZE 2048
#define RECV_BUFFER_LENGTH 32768
#define REQ_LENGTH 256
#define STRIP_LEADING_NEWLINE_CHAR(ptr) \
	while(*ptr == '\n') \
		ptr++;
#define STRIP_LEADING_WHITESPACES(ptr) \
	while(*ptr == ' ') \
		ptr++;
#define STRIP_TRAILING_CARRIAGE_RETURN(ptr) (ptr[strlen(ptr)-1] = '\0')

int main(int argc, char** argv)
{

	int send_sock_fd = -1, recv_sock_fd = -1;
	struct sockaddr_in src_addr, dst_addr;
	char dst[REQ_LENGTH] = {0};

	if (argc != 2)
	{
		printf("Usage: ./rawhttpget ip\n");
		exit(1);
	}

	strncpy(dst, argv[1], REQ_LENGTH);

	memset(&src_addr, 0, sizeof(struct sockaddr_in));
	memset(&dst_addr, 0, sizeof(struct sockaddr_in));

    // netlink通信
	uint32_t src_address = getLocalIPAddress(inet_addr(dst));

	src_addr.sin_family = AF_INET;
	src_addr.sin_port = htons((uint16_t) getpid());  // 将当前进程ID作为源端口
	src_addr.sin_addr = *(struct in_addr *) &src_address;

	dst_addr.sin_family = AF_INET;
	dst_addr.sin_port = htons(HTTP_PORT);
	dst_addr.sin_addr.s_addr = inet_addr(dst);

	send_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW); // IPPROTO_RAW:表示开发人员可以自己构造和解析 IP 数据包
	if (send_sock_fd < 0)
	{
		printf("Error: Creation of Raw Socket failed: %s!!\n", strerror(errno));
		exit(1);
	}

	recv_sock_fd = socket(AF_INET, SOCK_RAW, IPPROTO_TCP);  // IPPROTO_TCP表示接收TCP包

	if (recv_sock_fd < 0)
	{
		printf("Error: Creation of Raw Socket failed: %s!!\n", strerror(errno));
		exit(1);
	}

	if (bind(recv_sock_fd, (const struct sockaddr *) &src_addr,
			sizeof(struct sockaddr_in)) < 0)
	{
		printf("Error: Unable to bind the receiving socket: %s\n",
				strerror(errno));
		exit(1);
	}

	//IP_HDRINCL to tell the kernel that headers are included in the packet
	int one = 1;
	if (setsockopt(recv_sock_fd, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one)) < 0) // IP_HDRINCL:数据中包含IP头
	{
		perror("Error setting IP_HDRINCL");
		exit(1);
	}

	char psrc_addr[256] = {0}, pdst_addr[256] = {0};
	printf("Src Address: %s Destination Address: %s\n",
			inet_ntop(AF_INET, &src_addr.sin_addr.s_addr, psrc_addr, 256),
			inet_ntop(AF_INET, &dst_addr.sin_addr.s_addr, pdst_addr, 256));

	if (connect_tcp(send_sock_fd, recv_sock_fd, &dst_addr, &src_addr) < 0)
	{
		printf("TCP Connection Failed\n");
		goto EXIT;
	}
	else
		printf("TCP Connection Successful\n");

	EXIT: close(send_sock_fd);
	close(recv_sock_fd);

}

       routing_table.c

#include <stdio.h>
#include <stdlib.h>
#include <bits/sockaddr.h>
#include <asm/types.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>
#include <errno.h>
#include <arpa/inet.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <netdb.h>
#include <unistd.h>
#include <string.h>

#define BUFFER_LENGTH 8192
typedef struct rt_request
{
	struct nlmsghdr nl;
	struct rtmsg rt;
	char payload[BUFFER_LENGTH];
} rt_request;

uint32_t fetch_interface_ip(uint32_t if_index)
{
	int family;
	struct ifreq ifreq;
	char host[256] =
	{ 0 }, if_name[256] =
	{ 0 };
	uint32_t src_addr;
	int fd;

	if_indextoname(if_index, if_name);  // 根据索引值获取网络接口名,如eth0
	fd = socket(AF_INET, SOCK_DGRAM, 0);
	if (fd < 0)
	{
		perror("socket()");
		exit(EXIT_FAILURE);
	}

	memset(&ifreq, 0, sizeof ifreq);
	strncpy(ifreq.ifr_name, if_name, IFNAMSIZ);
	if (ioctl(fd, SIOCGIFADDR, &ifreq) != 0)    // 获取接口ip
	{
		/* perror(name); */
		return -1; /* ignore */
	}

	switch (family = ifreq.ifr_addr.sa_family)
	{
	case AF_UNSPEC:
		// return;
		return -1; /* ignore */
	case AF_INET:
	case AF_INET6:
		getnameinfo(&ifreq.ifr_addr, sizeof ifreq.ifr_addr, host, sizeof host,
				0, 0, NI_NUMERICHOST);
		break;
	default:
		sprintf(host, "unknown  (family: %d)", family);
	}
	inet_pton(AF_INET, host, &src_addr);
	close(fd);
	return src_addr;
}

void formRequest(rt_request* req)
{
	bzero(req, sizeof(req));
/*
struct nlmsghdr 为 netlink socket 自己的消息头,
这用于多路复用和多路分解 netlink 定义的所有协议类型以及其它一些控制,
netlink 的内核实现将利用这个消息头来多路复用和多路分解已经其它的一些控制,
因此它也被称为netlink 控制块。因此,应用在发送 netlink 消息时必须提供该消息头。
*/
	req->nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
	req->nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;  // NLM_F_REQUEST表示消息是一个请求
	req->nl.nlmsg_type = RTM_GETROUTE;  // nlmsg_type消息内容

    // 填充rtmsg结构体,即路由表管理结构体,对于上面的RTM_GETROUTE操作来说,只需要定义下面两个内容
	req->rt.rtm_family = AF_INET;
	req->rt.rtm_table = RT_TABLE_MAIN;

}

void sendRequest(int sock_fd, struct sockaddr_nl *pa, rt_request* req)
{
	struct msghdr msg;    // sendmsg和recvmsg的参数,描述发送消息和接收消息的结构体
	struct iovec iov;     // iovec结构体用于描述一个数据缓冲区
	int rtn;

	bzero(pa, sizeof(pa));
	pa->nl_family = AF_NETLINK;

	bzero(&msg, sizeof(msg));
	msg.msg_name = pa;
	msg.msg_namelen = sizeof(*pa);

	iov.iov_base = (void *) req;
	iov.iov_len = req->nl.nlmsg_len;

	msg.msg_iov = &iov;
	msg.msg_iovlen = 1;

	while (1)
	{
		if ((rtn = sendmsg(sock_fd, &msg, 0)) < 0)
		{
			if (errno == EINTR)
				continue;
			else
			{
				printf("Error: Unable to send NetLink message:%s\n",
						strerror(errno));
				exit(1);
			}
		}
		break;
	}

}

int receiveReply(int sock_fd, char* response_buffer)
{
	char* p;
	int nll, rtl, rtn;
	struct nlmsghdr *nlp;
	struct rtmsg *rtp;

	bzero(response_buffer, BUFFER_LENGTH);
	p = response_buffer;
	nll = 0;

	while (1)
	{
		if ((rtn = recv(sock_fd, p, BUFFER_LENGTH - nll, 0)) < 0)
		{
			if (errno == EINTR)
				continue;
			else
			{
				printf("Failed to read from NetLink Socket: %s\n",
						strerror(errno));
				exit(1);
			}

		}

		nlp = (struct nlmsghdr*) p;
		if (nlp->nlmsg_type == NLMSG_DONE)
			break;

		p += rtn;
		nll += rtn;
	}
	return nll;
}

uint32_t readReply(char *response, int nll, in_addr_t dst_address)
{
	struct nlmsghdr *nlp = NULL;
	struct rtmsg *rtp = NULL;
	struct rtattr *rtap = NULL;
	int rtl = 0, found_route = 0, default_route = 0;
	uint32_t route_addr, net_mask;
	uint32_t if_index = -1;

	nlp = (struct nlmsghdr*) response;
	for (; NLMSG_OK(nlp, nll); nlp = NLMSG_NEXT(nlp, nll))  // NLMSG_OK:检查nlh地址是否是一条完整的消息
	{                                                       // NLMSG_NEXT:当前消息地址,返回下一个消息地址
		rtp = (struct rtmsg *) NLMSG_DATA(nlp);        // NLMSG_DATA:从nlh首地址向后移动到data起始位置

		if (rtp->rtm_table != RT_TABLE_MAIN)
			continue;

		// RTM_RTA:输入route message指针,返回route第一个属性首地址
		rtap = (struct rtattr *) RTM_RTA(rtp);    // rtattr结构体封装可选路由信息的通用结构,用于表示 Netlink 消息的属性
		rtl = RTM_PAYLOAD(nlp);    // RTM_PAYLOAD:即rtmsg层封装的数据长度,相当于TCP数据包去掉IP报头和TCP报头长度得到TCP数据部分长度
		found_route = 0;
		default_route = 1;

		for (; RTA_OK(rtap, rtl); rtap = RTA_NEXT(rtap, rtl))  // RTA_OK:判断一个属性rta是否正确
		{                                                      // RTA_NEXT:先对attrlen减去rta属性内容的全部长度,然后返回下一个rtattr的首地址
			switch (rtap->rta_type)
			{
			// destination IPv4 address
			case RTA_DST:
				default_route = 0;
				route_addr = *((uint32_t*) RTA_DATA (rtap));
				net_mask = 0xFFFFFFFF;
				net_mask <<= (32 - rtp->rtm_dst_len);
				net_mask = ntohl(net_mask);
				if (route_addr == (dst_address & net_mask))
					found_route = 1;
				else if (route_addr == 0)
					default_route = 1;
				break;

				// unique ID associated with the network
				// interface
			case RTA_OIF:  // Output interface index
				if (found_route || default_route)
					if_index = *((uint32_t*) RTA_DATA (rtap));
				break;

			default:
				break;
			}
		}

		if (found_route)
			break;
	}

	return if_index;

}
// Netlink分层模型及消息格式:https://onestraw.github.io/linux/netlink-message/
uint32_t getLocalIPAddress(in_addr_t dst_address)
{
	int route_sock_fd = -1, res_len = 0;
	struct sockaddr_nl sa, pa;    // sa为消息接收者的 netlink 地址
	uint32_t if_index;

	rt_request req = {0};
	char response_payload[BUFFER_LENGTH] = {0};

	// Open Routing Socket
	if ((route_sock_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE)) == -1)
	{
		printf("Error: Failed to open routing socket: %s\n", strerror(errno));
		exit(1);
	}

	bzero(&sa, sizeof(sa));
	// nl_groups == 0 表示该消息为单播
	sa.nl_family = AF_NETLINK;
	sa.nl_pid = getpid();  // nl_pid表示接收消息者的进程ID

	bind(route_sock_fd, (struct sockaddr*) &sa, sizeof(sa));

	formRequest(&req);    // 构造netlink消息
	sendRequest(route_sock_fd, &pa, &req);    // 发送消息
	res_len = receiveReply(route_sock_fd, response_payload);    // 接收消息
	if_index = readReply(response_payload, res_len, dst_address);  // 从接收的消息中获取if(network interface)

	close(route_sock_fd);
	return fetch_interface_ip(if_index);    // 从if_index获取接口ip
}


       routing_table.h

#include <sys/types.h>
#include <netinet/in.h>

#ifndef ROUTING_TABLE_H
#define ROUTING_TABLE_H

uint32_t getLocalIPAddress(in_addr_t dst_address);

#endif

       tcp_handler.c

#include "tcp_handler.h"

#define STARTING_SEQUENCE 1
#define TCP_WORD_LENGTH_WITH_NO_OPTIONS 5
#define HAS_TCP_OPTIONS(ptr) (ptr->doff > TCP_WORD_LENGTH_WITH_NO_OPTIONS)
#define TCP_OPTION_OFFSET(ptr) ((char*)ptr + (TCP_WORD_LENGTH_WITH_NO_OPTIONS * WORD_LENGTH))
#define TCP_OPTION_LENGTH(ptr) ((ptr->doff - TCP_WORD_LENGTH_WITH_NO_OPTIONS) * WORD_LENGTH)
#define END_OF_TCP_OPTION_CHECK(ptr) ((*ptr) == 0)
#define TCP_OPTIONS_LEN(ptr) ((ptr->doff - TCP_WORD_LENGTH_WITH_NO_OPTIONS) * WORD_LENGTH )
#define IS_NO_OPERATION(ptr) ((*ptr) == 1)
#define IS_MSS(ptr) ((*ptr) == 2)
#define OPTION_LENGTH(ptr) (*(ptr+1))
#define min(a,b) \
   ({ __typeof__ (a) _a = (a); \
       __typeof__ (b) _b = (b); \
     _a < _b ? _a : _b; })
#define TCP_OPTION_DATA_OFFSET 2

#define IS_DUPLICATE_TCP_SEGMENT(tcph) (ntohl(tcph->seq) < tcp_state.server_next_seq_num)
#define IS_DUPLICATE_ACK(tcph) (tcph->ack && (tcph->ack_seq == tcp_state.last_acked_seq_num) )
#define WRAP_ROUND_BUFFER_SIZE(index) \
		({ __typeof__ (index) _index = (index); \
		 ( _index + 1) > MAX_BUFFER_SIZE ? 0 : (_index + 1); })

tcp_state__t tcp_state;

/*
 Generic checksum calculation function
 */
static unsigned short csum(uint16_t *ptr, unsigned int nbytes)
{
	uint32_t sum;
	uint16_t answer;

	sum = 0;
	while (nbytes > 1)
	{
		sum += *ptr++;
		nbytes -= 2;    // 以16位的字为单位计算和
	}
	if (nbytes == 1)   // 如果总长度为奇数个字节,则在最后增添一个位都为0的字节
	{
		sum += *(unsigned char*) ptr;
	}
	// 将32bit数据压缩成16bit数据,即将高16bit与低16bit相加,将进位加到低16位上,最后取反
	sum = (sum >> 16) + (sum & 0xffff);
	sum = sum + (sum >> 16);
	answer = (short) ~sum;

	return (answer);
}

static void calculate_tcp_checksum(struct tcphdr* tcph,
		uint16_t tcp_payload_len, uint32_t src_addr, uint32_t dst_addr)
{
	pseudo_header psh;
	char* pseudogram;
	uint16_t tcphdr_len = (tcph->doff * WORD_LENGTH);  // tcph->doff:以32位字为单位表示TCP头长

	// pseudoheader
	bzero(&psh, sizeof(pseudo_header));
	psh.source_address = src_addr;
	psh.dest_address = dst_addr;
	psh.protocol = IPPROTO_TCP;
	psh.tcp_length = htons(tcphdr_len + tcp_payload_len);

	int psize = sizeof(pseudo_header) + tcphdr_len + tcp_payload_len;
	pseudogram = malloc(psize);

	// TCP伪首部、TCP头、TCP数据
	bzero(pseudogram, psize);
	memcpy(pseudogram, &psh, sizeof(pseudo_header));
	memcpy(pseudogram + sizeof(pseudo_header), tcph,
			tcphdr_len + tcp_payload_len);

	// 计算校验和
	tcph->check = csum((uint16_t*) pseudogram, (unsigned int) psize);
	free(pseudogram);
}

static int validate_ip_checksum(struct iphdr* iph)
{
	int ret = -1;
	uint16_t received_checksum = iph->check;
	iph->check = 0;

	if (received_checksum
			== csum((uint16_t*) iph, (unsigned int) (iph->ihl * WORD_LENGTH)))
		ret = 1;

	return ret;
}

static int validate_tcp_checksum(struct tcphdr* tcph,
		uint16_t tcp_payload_length)
{
	int ret = -1;
	uint16_t received_checksum = tcph->check;
	tcph->check = 0;
	calculate_tcp_checksum(tcph, tcp_payload_length,
			*(uint32_t *) &tcp_state.session_info.dst_addr.sin_addr.s_addr,
			*(uint32_t *) &tcp_state.session_info.src_addr.sin_addr.s_addr);
	if (received_checksum == tcph->check)
		ret = 1;

	if (ret < 0) {
		printf("received_checksum:%d, tcph->check:%d\n", received_checksum, tcph->check);
	char psrc_addr[256] = {0}, pdst_addr[256] = {0};
	printf("Src Address: %s Destination Address: %s\n",
			inet_ntop(AF_INET, &tcp_state.session_info.src_addr.sin_addr.s_addr, psrc_addr, 256),
			inet_ntop(AF_INET, &tcp_state.session_info.dst_addr.sin_addr.s_addr, pdst_addr, 256));
	}
	return ret;
}

static packet_t* create_packet()
{
	packet_t* packet = malloc(sizeof(packet_t));

	// send tcp syn
	bzero(packet, sizeof(packet_t));
	packet->offset[IP_OFFSET] = packet->payload;
	packet->offset[TCP_OFFSET] = packet->payload + sizeof(struct iphdr);
	packet->offset[DATA_OFFSET] = packet->payload + sizeof(struct tcphdr)
			+ sizeof(struct iphdr);
	packet->retransmit_timer_id = NULL;
	return packet;
}

static void adjust_layer_offset(packet_t* packet)
{
	struct tcphdr *tcph;
	struct iphdr *iph;

	iph = (struct iphdr *) packet->payload;
	tcph = (struct tcphdr *) (packet->payload + (iph->ihl * WORD_LENGTH));
	packet->offset[TCP_OFFSET] = (char*) tcph;
	packet->offset[DATA_OFFSET] = (char*) (packet->offset[TCP_OFFSET]
			+ (tcph->doff * WORD_LENGTH));
}

static void destroy_packet(packet_t* packet)
{
	if (packet->retransmit_timer_id != NULL)
		timer_delete(packet->retransmit_timer_id);

	free(packet);
}

static void remove_acked_entries(uint32_t next_expected_seq)
{
	pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
	while ((tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet_seq
			< next_expected_seq)
			&& !(tcp_state.sender_info.retx_buffer_head
					== tcp_state.sender_info.retx_buffer_tail))
	{
		destroy_packet(
				tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet);
		tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_head].packet = NULL;
		tcp_state.sender_info.retx_buffer_head =
		WRAP_ROUND_BUFFER_SIZE(tcp_state.sender_info.retx_buffer_head);
	}
	pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}

static void reset_packet_retransmission_timer(timer_t* timer_id,
		uint16_t timeInSecs)
{
	struct itimerspec timer_value = {0};
	timer_value.it_interval.tv_sec = timeInSecs;
	timer_value.it_value.tv_sec = timeInSecs;

	if (timer_settime(*timer_id, 0, &timer_value, NULL) < 0)
	{
		printf("Failed to set time!!");
		timer_delete(*timer_id);
		*timer_id = NULL;
	}
}

static void build_ip_header(struct iphdr* iph, uint16_t ip_payload_len)
{
	iph->daddr = *(uint32_t*) &tcp_state.session_info.dst_addr.sin_addr.s_addr;
	iph->saddr = *(uint32_t*) &tcp_state.session_info.src_addr.sin_addr.s_addr;
	iph->ihl = 5;
	iph->protocol = IPPROTO_TCP;
	iph->ttl = 255;
	iph->version = 4;
	iph->tot_len = sizeof(struct iphdr) + ip_payload_len;
	iph->check = csum((unsigned short*) iph, sizeof(struct iphdr));
}

static void build_tcp_header(struct tcphdr* tcph, tcp_flags_t* flags,
		uint16_t payload_len)
{
	tcph->dest = *(uint16_t*) &tcp_state.session_info.dst_addr.sin_port;
	tcph->source = *(uint16_t*) &tcp_state.session_info.src_addr.sin_port;
	tcph->window = htons(tcp_state.client_window_size);
	tcph->seq = htonl(tcp_state.client_next_seq_num);
	tcp_state.client_next_seq_num +=
			(flags->syn || flags->fin) ? 1 : payload_len;
	tcph->doff = (flags->syn) ? 6 : 5;
	tcph->syn = flags->syn;
	tcph->ack = flags->ack;
	tcph->fin = flags->fin;
	tcph->psh = flags->psh;
	tcph->ack_seq = htonl(tcp_state.server_next_seq_num);

	if (flags->syn)
	{
		char* tcp_options = ((char *) tcph) + sizeof(struct tcphdr);
		tcp_options_t mss = {0};
		mss.option_type = 2;
		mss.option_len = 4;
		mss.option_value = htons(1460);
		memcpy(tcp_options++, &mss.option_type, sizeof(char));
		memcpy(tcp_options++, &mss.option_len, sizeof(char));
		memcpy(tcp_options, &mss.option_value, sizeof(uint16_t));
	}
}

static void build_packet_headers(packet_t* packet, int payload_len,
		tcp_flags_t* flags)
{
	struct tcphdr* tcph = (struct tcphdr*) packet->offset[TCP_OFFSET];
	struct iphdr* iph = (struct iphdr*) packet->offset[IP_OFFSET];

	build_tcp_header(tcph, flags, payload_len);
	calculate_tcp_checksum(tcph, payload_len,
			*(uint32_t *) &tcp_state.session_info.src_addr.sin_addr.s_addr,
			*(uint32_t *) &tcp_state.session_info.dst_addr.sin_addr.s_addr);
	build_ip_header(iph, ((tcph->doff * WORD_LENGTH) + payload_len));
}

static int send_packet(void *buffer, int total_packet_len)
{
	int ret = -1;

	pthread_mutex_lock(&tcp_state.session_info.send_fd_lock);
	while (total_packet_len > 0)
	{
		//Send the packet
		if ((ret = sendto(tcp_state.session_info.send_fd, buffer,
				total_packet_len, 0,
				(struct sockaddr *) &tcp_state.session_info.dst_addr,
				sizeof(struct sockaddr_in))) < 0)
		{
			if (errno == EINTR)
			{
				printf("Sendto() Interrupted!!");
				continue;
			}
			else
			{
				perror("sendto failed");
				goto EXIT;
			}
		}
		if (ret == total_packet_len)
			break;

		total_packet_len -= ret;
		buffer += ret;
	}

	EXIT: pthread_mutex_unlock(&tcp_state.session_info.send_fd_lock);
	return ret;
}

static void handle_packet_retransmission()
{
	packet_t* packet = NULL;
	pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);
	int index = tcp_state.sender_info.retx_buffer_head;
	while (index != tcp_state.sender_info.retx_buffer_tail)
	{
		packet = tcp_state.sender_info.retx_buffer[index].packet;
		// 重启重传定时器
		reset_packet_retransmission_timer(&packet->retransmit_timer_id, 0);
		if (send_packet(packet->payload, packet->payload_len) < 0)
			printf("Failed to retransmit packet!!");
		reset_packet_retransmission_timer(&packet->retransmit_timer_id, 60);
		index++;
	}
	pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}

static int send_ack_segment(uint8_t fin)
{
	int ret = -1;
	packet_t* packet = create_packet();
	tcp_flags_t flags =
	{ 0 };

	flags.ack = 1;
	flags.fin = fin;
	build_packet_headers(packet, 0, &flags);

	if ((ret = send_packet(&packet->payload,
			((struct iphdr*) packet->offset[IP_OFFSET])->tot_len)) < 0)
	{
		printf("Send error!! Exiting.. ");
	}

	EXIT: destroy_packet(packet);
	return ret;
}

static int receive_packet(packet_t *packet)
{
	int ret = -1;
	while (1)
	{
		if ((ret = recvfrom(tcp_state.session_info.recv_fd, &packet->payload,
				sizeof(packet->payload), 0,
				NULL, NULL)) < 0)
		{
			if (errno == EINTR)
				continue;
			else
			{
				perror("recv failed");
				return ret;
			}

		}
		//Data received successfully
		struct iphdr *iph = (struct iphdr *) &packet->payload;
		// printf("packet->payload:%s\n", packet->payload);
		if (validate_ip_checksum(iph) < 0)
		{
			printf("IP Checksum validation failed!! Packet dropped!!\n");
			continue;
		}

		uint16_t iphdr_len = iph->ihl * WORD_LENGTH;
		struct tcphdr *tcph = (struct tcphdr *) ((char*) iph + iphdr_len);
		uint16_t tcphdr_len = tcph->doff * WORD_LENGTH;

		if (iph->saddr != tcp_state.session_info.dst_addr.sin_addr.s_addr
				&& tcph->dest != tcp_state.session_info.src_port
				&& tcph->source != tcp_state.session_info.dst_port)
			continue;

		if (validate_tcp_checksum(tcph,
				(ntohs(iph->tot_len) - iphdr_len - tcphdr_len)) < 0)
		{
			printf("TCP Checksum validation failed!! Packet dropped!!\n");
			continue;
		}

		if ( IS_DUPLICATE_ACK(tcph))
		{
			handle_packet_retransmission();
			continue;
		}
		else if ( IS_DUPLICATE_TCP_SEGMENT(tcph))
		{
			send_ack_segment(0);
			continue;
		}

		adjust_layer_offset(packet);
		packet->payload_len = (ntohs(iph->tot_len) - iphdr_len - tcphdr_len);
		// printf("packet->payload_len:%d\n", packet->payload_len);
		break;
	}
	return ret;
}

static void process_ack(struct tcphdr *tcph, uint16_t payload_len)
{
	tcp_state.server_next_seq_num = (ntohl(tcph->seq) + payload_len);  // 当前收到的包的序号是seq,长度是payload_len,那么下一个数据包的seq就是ntohl(tcph->seq) + payload_len
	tcp_state.last_acked_seq_num = (ntohl(tcph->ack_seq));  // 下一个发包的seq

	pthread_mutex_lock(&tcp_state.tcp_state_lock);
	tcp_state.server_window_size = ntohs(tcph->window);    // 更新对端接收窗口值
	tcp_state.cwindow_size =
			(++tcp_state.cwindow_size > MAX_CONGESTION_WINDOW_SIZE) ?
					MAX_CONGESTION_WINDOW_SIZE : tcp_state.cwindow_size;
	pthread_cond_signal(&tcp_state.send_window_low_thresh);
	pthread_mutex_unlock(&tcp_state.tcp_state_lock);

	remove_acked_entries(ntohl(tcph->ack_seq));    // 删除已经收到回应的数据包
	// 更新tcp_state.max_segment_size
	if (HAS_TCP_OPTIONS(tcph))
	{
		char* tcp_options_offset = (char*) TCP_OPTION_OFFSET(tcph);
		uint16_t total_options_len = TCP_OPTIONS_LEN(tcph);

		while (!END_OF_TCP_OPTION_CHECK(tcp_options_offset)
				&& total_options_len > 0)
		{
			if ( IS_NO_OPERATION(tcp_options_offset))
			{
				tcp_options_offset++;
				total_options_len--;
			}
			else if ( IS_MSS(tcp_options_offset))
			{
				tcp_state.max_segment_size =
						min(tcp_state.max_segment_size,
								*((uint16_t*)(tcp_options_offset+TCP_OPTION_DATA_OFFSET)));
				tcp_options_offset += OPTION_LENGTH(tcp_options_offset);
				total_options_len -= OPTION_LENGTH(tcp_options_offset);
			}
			else
			{
				tcp_options_offset += OPTION_LENGTH(tcp_options_offset);
				total_options_len -= OPTION_LENGTH(tcp_options_offset);
			}
		}
	}
}

static void retransmission_timer_handler(union sigval value)
{
	int buffer_index = value.sival_int;
	packet_t* packet = NULL;

	pthread_mutex_lock(&tcp_state.tcp_state_lock);
	tcp_state.cwindow_size = 1;
	pthread_mutex_unlock(&tcp_state.tcp_state_lock);

	pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);

	if (tcp_state.sender_info.retx_buffer[buffer_index].packet == NULL
			|| buffer_index < tcp_state.sender_info.retx_buffer_head)
		goto EXIT;

	packet = tcp_state.sender_info.retx_buffer[buffer_index].packet;
	if (send_packet(&packet->payload,
			((struct iphdr*) packet->offset[IP_OFFSET])->tot_len) < 0)
	{
		printf("Failed to retransmit packet!!\n");
	}

	EXIT: pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);
}

void create_retransmission_timer(timer_t* timer, int send_buffer_index)
{
	union sigval val;
	struct sigevent sev;
	struct itimerspec timer_value = {0};

	memset(&val, 0, sizeof(val));
	memset(&sev, 0, sizeof(sev));
	val.sival_int = send_buffer_index;

	// SIGEV_THREAD:当定时器到期,内核会(在此进程内)以sigev_notification_attributes为线程属性创建一个线程,
	// 并且让它执行sigev_notify_function,传入sigev_value作为为一个参数。
	sev.sigev_notify = SIGEV_THREAD;
	sev.sigev_value = val;
	sev.sigev_notify_function = retransmission_timer_handler;    // 定时器到期,重传数据包(即超时重传)

	// 创建定时器
	// CLOCK_MONOTONIC:从系统启动这一刻起开始计时,不受系统时间被用户改变的影响
	if (timer_create(CLOCK_MONOTONIC, &sev, timer) < 0)
	{
		printf("Failed to create the retransmission timer!!");
		*timer = NULL;
		goto EXIT;
	}

	timer_value.it_interval.tv_sec = 60;  // it_interval:定时时间 60s
	timer_value.it_value.tv_sec = 60;     // it_value:单次启动时间 60s

	// 设置定时器
	if (timer_settime(*timer, 0, &timer_value, NULL) < 0)
	{
		printf("Failed to set time!!");
		timer_delete(*timer);
		*timer = NULL;
	}

	EXIT: return;
}

static int send_tcp_segment(packet_t* packet)
{
	int ret = 0;

	if ((ret = send_packet(&packet->payload,
			((struct iphdr*) packet->offset[IP_OFFSET])->tot_len)) < 0)
	{
		printf("Send error!! Exiting.. ");
		goto EXIT;
	}
	// 创建重传定时器,超时重传数据包 NULL 0
	create_retransmission_timer(&packet->retransmit_timer_id,
			tcp_state.sender_info.retx_buffer_tail);

	pthread_mutex_lock(&tcp_state.sender_info.tcp_retx_lock);

	// 数据包写入发送循环队列
	tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_tail].packet_seq =
			((struct tcphdr*) &packet->offset[TCP_OFFSET])->seq;
	tcp_state.sender_info.retx_buffer[tcp_state.sender_info.retx_buffer_tail].packet =
			packet;
	// 发送尾指针加一,指向下一个空队列空间
	tcp_state.sender_info.retx_buffer_tail =
	WRAP_ROUND_BUFFER_SIZE(tcp_state.sender_info.retx_buffer_tail);

	pthread_mutex_unlock(&tcp_state.sender_info.tcp_retx_lock);

	EXIT: return ret;
}

static int send_syn()
{
	int ret = -1;
	packet_t* packet = create_packet();
	tcp_flags_t flags = {0};

	flags.syn = 1;
	build_packet_headers(packet, 0, &flags);
	tcp_state.tcp_current_state = SYN_SENT;

	return send_tcp_segment(packet);
}

static int receive_syn_ack_segment(tcp_flags_t* flags)
{
	int ret = -1;
	packet_t* packet = create_packet();
	struct tcphdr *tcph;

	while (1)
	{
		if ((ret = receive_packet(packet)) < 0)
		{
			printf("Receive error!! Exiting.. ");
			goto EXIT;
		}

		tcph = (struct tcphdr *) packet->offset[TCP_OFFSET];

		if (tcph->ack == flags->ack && tcph->syn == flags->syn)
			break;

		if (tcph->rst || !tcp_state.syn_retries)
		{
			ret = -1;
			goto EXIT;
		}
	}

	process_ack(tcph, 1);

	EXIT: destroy_packet(packet);
	return ret;
}

static int initialize_mutex(pthread_mutex_t* mutex)
{
	int ret = -1;
	pthread_mutexattr_t mutex_attr;

	if ((ret = pthread_mutexattr_init(&mutex_attr)) != 0)
	{
		printf("Failed to initialize mutex attribute\n");
		ret = -1;
		goto EXIT;
	}

	if ((ret = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_RECURSIVE))
			!= 0)
	{
		printf("Failed to set mutex attribute\n");
		ret = -1;
		goto EXIT;
	}

	if ((ret = pthread_mutex_init(mutex, &mutex_attr)) != 0)
	{
		printf("Failed to initialize mutex!!\n");
		ret = -1;
	}

	EXIT: return ret;
}

static void get_wait_time(struct timespec* timeToWait, uint16_t timeInSeconds)
{
	struct timeval now;
	int rt;

	gettimeofday(&now, NULL);

	timeToWait->tv_sec = now.tv_sec + timeInSeconds;
	timeToWait->tv_nsec = 0;
}

//Blocking call
int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
		struct sockaddr_in* src_addr)
{
	int ret = 0;

// Initialize the TCP Session State with the given details
	bzero(&tcp_state, sizeof(tcp_state__t));
	tcp_state.max_segment_size = MAX_CLIENT_SEGMENT_SIZE;    // 初始化MSS
	tcp_state.client_window_size = CLIENT_WINDOW_SIZE;       // 初始化拥塞窗口
	tcp_state.client_next_seq_num = STARTING_SEQUENCE;       // 客户端下个包的seq
	tcp_state.session_info.dst_addr = *dst_addr;             // 目的地址
	tcp_state.session_info.src_addr = *src_addr;             // 源地址
	tcp_state.session_info.recv_fd = recv_fd;                // 接收句柄
	tcp_state.session_info.send_fd = send_fd;                // 发送句柄
	tcp_state.syn_retries = 5;                               // 重传次数
	tcp_state.cwindow_size = 1;    // 拥塞窗口值
	initialize_mutex(&tcp_state.tcp_state_lock);
	initialize_mutex(&tcp_state.session_info.send_fd_lock);

	tcp_flags_t flags = {0};
	flags.ack = 1;
	flags.syn = 1;
	if (((ret = send_syn()) < 0) || ((ret = receive_syn_ack_segment(&flags)) < 0)
	                             || ((ret = send_ack_segment(0)) < 0))
	{
		printf("Failed to set up TCP Connection!!");
		ret = -1;
		goto EXIT;
	}
	tcp_state.tcp_current_state = ESTABLISHED;

	EXIT: return ret;
}

static int send_fin()
{
	int ret = -1;
	packet_t* packet = create_packet();
	tcp_flags_t flags = {0};

	flags.fin = 1;
	flags.ack = 1;
	build_packet_headers(packet, 0, &flags);

	return send_tcp_segment(packet);
}

int close_tcp()
{
	int ret = -1;
	pthread_mutex_lock(&tcp_state.tcp_state_lock);
	if (!((tcp_state.tcp_current_state & ESTABLISHED)
			|| (tcp_state.tcp_current_state & CLOSE_WAIT)))
	{
		pthread_mutex_unlock(&tcp_state.tcp_state_lock);
		goto EXIT;
	}
	pthread_mutex_unlock(&tcp_state.tcp_state_lock);

	if ((ret = send_fin()) < 0)
		goto EXIT;

	struct timespec timeToWait;
	get_wait_time(&timeToWait, 10);

	pthread_mutex_lock(&tcp_state.tcp_state_lock);

	if (tcp_state.tcp_current_state & ESTABLISHED)
		tcp_state.tcp_current_state = FIN_WAIT_1;
	else
		tcp_state.tcp_current_state = LAST_ACK;

	tcp_state.tcp_write_end_closed = 1;
	pthread_cond_timedwait(&tcp_state.tcp_session_closed_notify,
			&tcp_state.tcp_state_lock, &timeToWait);

	pthread_mutex_unlock(&tcp_state.tcp_state_lock);

	EXIT: return ret;
}

static void release_and_update_recv_buffer(packet_t* packet)
{
	pthread_mutex_lock(&tcp_state.recv_info.tcp_recv_lock);

	tcp_state.recv_info.recv_buffer[tcp_state.recv_info.recv_buffer_head].packet =
	NULL;
	tcp_state.recv_info.recv_buffer_head =
	WRAP_ROUND_BUFFER_SIZE(tcp_state.recv_info.recv_buffer_head);
	destroy_packet(packet);
	pthread_cond_signal(&tcp_state.recv_info.recv_buffer_full);

	pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);

}

int receive_data(char* buffer, int buffer_len)
{
	int total_bytes_read = 0, ret = -1;
	packet_t* packet = NULL;
	struct timespec timeToWait;

	while (buffer_len > 0)
	{
		get_wait_time(&timeToWait, 5);

		pthread_mutex_lock(&tcp_state.recv_info.tcp_recv_lock);
		if (tcp_state.recv_info.recv_buffer_head
				== tcp_state.recv_info.recv_buffer_tail)
		{
			if (total_bytes_read > 0)
			{
				pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
				break;
			}
			else
			{
				if ((ret = pthread_cond_timedwait(
						&tcp_state.recv_info.recv_buffer_empty,
						&tcp_state.recv_info.tcp_recv_lock, &timeToWait)) != 0)
				{
					pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);
					if (ret == ETIMEDOUT)
					{
						pthread_mutex_lock(&tcp_state.tcp_state_lock);
						if (tcp_state.tcp_read_end_closed)
						{
							printf("TCP Server Closed!!\n");
							total_bytes_read = -1;
							pthread_mutex_unlock(&tcp_state.tcp_state_lock);
							break;
						}
						pthread_mutex_unlock(&tcp_state.tcp_state_lock);
						continue;
					}
					else
						break;
				}
			}
		}

		packet =
				tcp_state.recv_info.recv_buffer[tcp_state.recv_info.recv_buffer_head].packet;
		pthread_mutex_unlock(&tcp_state.recv_info.tcp_recv_lock);

		int copied_bytes = 0;
		if (packet->payload_len > buffer_len)
		{
			printf("CHUNKED TRANSFER: %d:%d\n", packet->payload_len,
					buffer_len);
			memcpy((buffer + total_bytes_read), packet->offset[DATA_OFFSET],
					buffer_len);
			packet->offset[DATA_OFFSET] += buffer_len;
			packet->payload_len -= buffer_len;
			total_bytes_read += buffer_len;
			copied_bytes = buffer_len;
			buffer_len = 0;
		}
		else
		{
			memcpy((buffer + total_bytes_read), packet->offset[DATA_OFFSET],
					packet->payload_len);
			buffer_len -= packet->payload_len;
			total_bytes_read += packet->payload_len;
			copied_bytes = packet->payload_len;
			release_and_update_recv_buffer(packet);
		}

		pthread_mutex_lock(&tcp_state.tcp_state_lock);
		tcp_state.client_window_size += copied_bytes;
		tcp_state.client_window_size =
				(tcp_state.client_window_size > CLIENT_WINDOW_SIZE) ?
						CLIENT_WINDOW_SIZE : tcp_state.client_window_size;
		pthread_mutex_unlock(&tcp_state.tcp_state_lock);
	}

	return total_bytes_read;
}

       tcp_handler.h

#ifndef TCP_HANDLER_H_
#define TCP_HANDLER_H_

#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <errno.h>
#include <string.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <string.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <pthread.h>
#include <signal.h>
#include <time.h>
#include <sys/time.h>

#define TOTAL_LAYERS  2
#define IP_LAYER_OFFSET  0
#define TCP_LAYER_OFFSET 1
#define PAYLOAD_OFFSET 2
#define CLIENT_PORT 35555
#define HTTP_PORT 80
#define RTAX_MAX 8
#define IP_OFFSET 0
#define TCP_OFFSET 1
#define DATA_OFFSET 2
#define MAX_BUFFER_SIZE 400
#define MAX_CLIENT_SEGMENT_SIZE 1460
// #define CLIENT_WINDOW_SIZE 16384
#define CLIENT_WINDOW_SIZE 12000
#define WORD_LENGTH 4
// #define PACKET_MAX_SIZE 16384
#define PACKET_MAX_SIZE 12000
#define MAX_PAYLOAD_LEN (PACKET_MAX_SIZE - sizeof(struct iphdr) - sizeof(struct tcphdr))
#define MAX_CONGESTION_WINDOW_SIZE 1000

typedef enum
{
	SYN_SENT = 1,
	ESTABLISHED = 2,
	FIN_WAIT_1 = 4,
	FIN_WAIT_2 = 8,
	CLOSE_WAIT = 16,
	CLOSING = 32,
	LAST_ACK = 64,
	CLOSED = 128
} tcp_state_machine_t;

typedef struct
{
	uint8_t syn :1;
	uint8_t ack :1;
	uint8_t fin :1;
	uint8_t psh :1;
} tcp_flags_t;

typedef struct
{
	uint8_t option_type;
	uint8_t option_len;
	uint16_t option_value;
} tcp_options_t;

typedef struct
{
	char payload[PACKET_MAX_SIZE];
	char* offset[TOTAL_LAYERS + 1];
	timer_t retransmit_timer_id;
	uint16_t payload_len;
} packet_t;

typedef struct
{
	packet_t* packet;
	uint32_t packet_seq;
} buffered_packet_t;

// TCP 伪首部
typedef struct
{
	u_int32_t source_address;
	u_int32_t dest_address;
	u_int8_t placeholder;
	u_int8_t protocol;
	u_int16_t tcp_length;
} pseudo_header;

typedef struct
{
	struct sockaddr_in src_addr;
	struct sockaddr_in dst_addr;
	uint16_t src_port;
	uint16_t dst_port;
	int send_fd;
	int recv_fd;
	pthread_mutex_t send_fd_lock;
} session_info__t;

typedef struct
{
	buffered_packet_t send_buffer[MAX_BUFFER_SIZE];
	uint16_t send_buffer_head;
	uint16_t send_buffer_tail;
	buffered_packet_t retx_buffer[MAX_BUFFER_SIZE];
	uint16_t retx_buffer_head;
	uint16_t retx_buffer_tail;
	pthread_mutex_t tcp_send_lock;
	pthread_mutex_t tcp_retx_lock;
	pthread_cond_t send_buffer_empty;
	pthread_cond_t send_buffer_full;
} tcp_send_data_t;

typedef struct
{
	buffered_packet_t recv_buffer[MAX_BUFFER_SIZE];
	uint16_t recv_buffer_head;
	uint16_t recv_buffer_tail;
	pthread_mutex_t tcp_recv_lock;
	pthread_cond_t recv_buffer_empty;
	pthread_cond_t recv_buffer_full;
} tcp_recv_data_t;

typedef struct
{
	session_info__t session_info;
	uint32_t client_next_seq_num;    // 本端发送的下一个数据包的seq
	uint32_t last_acked_seq_num;     // (相对的)三次回应包的seq
	uint32_t server_next_seq_num;    // 对端下一个包的seq(即希望对方下一个包的数据是从第seq开始的)
	uint16_t server_window_size;
	uint16_t client_window_size;
	uint16_t max_segment_size;
	uint16_t cwindow_size;
	uint16_t ssthresh;
	pthread_cond_t send_window_low_thresh;
	uint8_t syn_retries;
	tcp_send_data_t sender_info;
	tcp_recv_data_t recv_info;
	pthread_mutex_t tcp_state_lock;
	pthread_cond_t tcp_session_closed_notify;
	uint8_t tcp_write_end_closed;
	uint8_t tcp_read_end_closed;
	pthread_t tcp_worker_threads[2];
	tcp_state_machine_t tcp_current_state;
} tcp_state__t;

int connect_tcp(int send_fd, int recv_fd, struct sockaddr_in* dst_addr,
		struct sockaddr_in* src_addr);

int send_data(char* buffer, int buffer_len);

int receive_data(char* buffer, int buffer_len);

int close_tcp();

#endif /* TCP_HANDLER_H_ */

       本代码参考:https://github.com/praveenkmurthy/Raw-Sockets

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903930.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024年【危险化学品生产单位安全生产管理人员】考试总结及危险化学品生产单位安全生产管理人员考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 危险化学品生产单位安全生产管理人员考试总结是安全生产模拟考试一点通总题库中生成的一套危险化学品生产单位安全生产管理人员考试试题&#xff0c;安全生产模拟考试一点通上危险化学品生产单位安全生产管理人员作业…

6、Redis系统-数据结构-05-整数

五、整数集合&#xff08;Intset&#xff09; 整数集合是 Redis 中 Set 对象的底层实现之一。当一个 Set 对象只包含整数值元素&#xff0c;并且元素数量不大时&#xff0c;就会使用整数集合这个数据结构作为底层实现。整数集合通过紧凑的内存布局和升级机制&#xff0c;实现了…

保存在FinalShell服务器登录密码忘记了,如何快速获取到

一、从FinalShell获取服务器基本信息 如图操作会导出一个json文件&#xff0c;可以直接保存在桌面&#xff0c;或者其他位置 json格式如下&#xff1a; {"forwarding_auto_reconnect":false ,"custom_size":false ,"delete_time":0 ,"sec…

python读取指定文件夹下的图片(glob获取)

python读取指定文件夹下的图片&#xff08;glob获取&#xff09; 定义traverse_images函数&#xff0c;仅需要改变下根路径即可 glob是python中用来查找符合特定规则的文件路径名的函数 import os from glob import globdef traverse_images (folder_path):image_formats …

ComfyUI如何高效率使用多Lora

Efficient 工作流 {"last_node_id": 29,"last_link_id": 56,"nodes": [{"id": 26,"type": "LoRA Stacker","pos": [540,270],"size": {"0": 320,"1": 322},"flag…

增强安全防护,解读智慧校园系统的登录日志功能

在构建智慧校园系统时&#xff0c;登录日志功能扮演着不可或缺的角色&#xff0c;它不仅是系统安全的守护者&#xff0c;也是提升管理效率和确保合规性的有力工具。这一机制详细记录每次登录尝试的方方面面&#xff0c;涵盖了时间戳、用户身份、登录来源的IP地址乃至使用的设备…

python脚本“文档”撰写——“诱骗”ai撰写“火火的动态”python“自动”脚本文档

“火火的动态”python“自动”脚本文档&#xff0c;又从ai学习搭子那儿“套”来&#xff0c;可谓良心质量&#x1f44d;&#x1f44d;。 (笔记模板由python脚本于2024年07月07日 15:15:33创建&#xff0c;本篇笔记适合喜欢钻研python和页面源码的coder翻阅) 【学习的细节是欢悦…

Python遥感开发之批量对TIF数据合并

Python遥感开发之批量对TIF数据合并 1 原始数据展示2 按照年份合成春夏秋冬季节数据3 完整代码实现 前言&#xff1a;通常对遥感数据按照月和年或者季节进行分析&#xff0c;我们需要对我们下载的8天或者16天数据按照需求进行合并&#xff0c;对数据的合并一般可以采取均值法、…

移动校园(5):课程表数据获取及展示

首先写下静态页面&#xff0c;起初打算做成一周的课表&#xff0c;由于是以小程序的形式展现&#xff0c;所以显示一周的话会很拥挤&#xff0c;所以放弃下面的方案&#xff0c;改作一次显示一天 改后结果如下&#xff0c;后期还会进行外观优化 真正困难的部分是数据获取 大家大…

高德地图 key 和安全密钥使用

参考高德地图&#xff1a;JS API 安全密钥使用 高德地图 key 和安全密钥使用 一、通过明文方式设置参数查看如下成功后返回的信息 二、通过代理服务器转发实验&#xff1a;通过本地地址转发返回错的错误信息&#xff0c;如下通过正确的项目的的服务地址&#xff0c;返回正常参数…

Flink,spark对比

三&#xff1a;az 如何调度Spark、Flink&#xff0c;MR 任务 首先&#xff0c;使用java编写一个spark任务&#xff0c;定义一个类&#xff0c;它有main方法&#xff0c;里面写好逻辑&#xff0c;sparkConf 和JavaSparkContext 获取上下文&#xff0c;然后打成一个jar包&#xf…

深度学习之网络构建

目标 选择合适的神经网络 卷积神经网络&#xff08;CNN&#xff09;&#xff1a;我们处理图片、视频一般选择CNN 循环神经网络&#xff08;RNN&#xff09;&#xff1a;我们处理时序数据一般选择RNN 超参数的设置 为什么训练的模型的错误率居高不下 如何调测出最优的超参数 …

Node.js介绍 , 安装与使用

1.Node.js 1 什么是Node.js 官网&#xff1a;https://nodejs.org/zh-cn/ 中文学习网&#xff1a;http://nodejs.cn/learn1.Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境。Node.js 使用了一个事件驱动、非阻塞式 I/O 的模型,使其轻量又高效。 2.前端的底层 html…

C++、QT企业管理系统

目录 一、项目介绍 二、项目展示 三、源码获取 一、项目介绍 人事端&#xff1a; 1、【产品中心】产品案列、新闻动态的发布&#xff1b; 2、【员工管理】新增、修改、删除、搜索功能&#xff1b;合同以图片的方式上传 3、【考勤总览】根据日期显示所有员工上班、下班时间…

下载nvm 管理多个node版本并切换

nvm管理多个node版本并切换 安装nvm时不能安装任何node版本&#xff08;先删除node再安装nvm&#xff09;&#xff0c;保证系统无任何node.js残留 1. 卸载node 控制面板中卸载nodejs 删除以下文件夹&#xff1a; C:\Program Files (x86)\Nodejs C:\Program Files\Nodejs C…

聚类分析方法(一)

目录 一、聚类分析原理&#xff08;一&#xff09;聚类分析概述&#xff08;二&#xff09;聚类的数学定义&#xff08;三&#xff09;簇的常见类型&#xff08;四&#xff09;聚类框架及性能要求&#xff08;五&#xff09;簇的距离 二、划分聚类算法&#xff08;一&#xff0…

【matlab】状态空间模型与传递函数模型的建立与转换

目录 SISO系统 MIMO系统 状态空间模型 状态空间模型到传递函数模型的转换 传递函数模型到状态空间模型的转换 (1) 转换函数ss() (2) 规范形转换函数canon() (3) 常微分方程(传递函数)转换为状态空间模型函数dif2ss() 状态空间模型的变换 特征值、特征向量与广义特征向量的计算…

进程控制-wait和waitpid进程回收

wait 阻塞函数 函数作用&#xff1a; 1. 阻塞并等待子进程退出 2. 回收子进程残留资源 3. 获取子进程结束状态&#xff08;退出原因&#xff09; pid_t wait(int *wstatus); 返回值&#xff1a; ‐1 : 回收失败&#xff0c;已经没有子进程了 >0 : 回收子进程对应的…

线上问题---反思与回顾

线上问题一&#xff1a;麦哲伦2.0 人群配置不生效 发现背景&#xff1a;产品发现三层模型部分计划个别测试计划圈选人群特征与数仓统计数据的人群不一致&#xff0c;向值班人员反馈 根因定位&#xff1a; &#xff08;1&#xff09;用户配置三层模型计划时&#xff0c;配置单…

文心一言 VS 讯飞星火 VS chatgpt (297)-- 算法导论22.1 1题

一、给定有向图的邻接链表&#xff0c;需要多长时间才能计算出每个结点的出度(发出的边的条数)&#xff1f;多长时间才能计算出每个结点的入度(进入的边的条数)&#xff1f;如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 计算出度 对于有向图的邻接链表表示&a…