【数据结构】09.树与二叉树

news2024/11/27 12:46:16

一、树的概念与结构

1.1 树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  • 根结点:根节点没有前驱结点。
  • 除根节点外,其余结点被分成是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。
  • 因此,树是递归定义的。

在这里插入图片描述

1.2 树的相关概念

在这里插入图片描述

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为4
  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、F、G、D、H节点为叶节点
  • 非终端节点或分支节点:度不为0的节点; 如上图:A、C、E节点为分支节点
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为4
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为3
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:F、G互为兄弟节点
  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  • 森林:由m棵互不相交的树的集合称为森林;

1.3 树的表示法

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。

在介绍以下存储结构的过程中,我们都以下面这个树为例子。在这里插入图片描述

1.3.1 双亲表示法

我们假设以一组连续空间存储树的结点,同时在每个结点中,附设一个指示器指示其双亲结点到链表中的位置。也就是说,每个结点除了知道自已是谁以外,还知道它的双亲在哪里。
在这里插入图片描述
其中data是数据域,存储结点的数据信息。而parent是指针域,存储该结点的双亲在数组中的下标。
以下是我们的双亲表示法的结点结构定义代码。

/*树的双亲表示法结点结构定义*/
#define MAX_TREE_SIZE 100
typedef int TElemType;	//树结点的数据类型,目前暂定为整型
/*结点结构*/
typedef struct TreeNode
{
	TElemType data;	//结点数据
	int parent;	//双亲位置
}TreeNode;
/*树结构*/
typedef struct
{
	TreeNode nodes[MAX_TREE_SIZE];	//结点数组
	int r, n;	//根的位置和结点数
}PTree;

这样的存储结构,我们可以根据结点的parent 指针很容易找到它的双亲结点,所用的时间复杂度为0(1),直到parent为-1时,表示找到了树结点的根。可如果我们要知道结点的孩子是什么,对不起,请遍历整个结构才行。

1.3.2 孩子兄弟表示法

刚才我们分别从双亲的角度和从孩子的角度研究树的存储结构,如果我们从树结点的兄弟的角度又会如何呢?当然,对于树这样的层级结构来说,只研究结点的兄弟是不行的,我们观察后发现,任意一棵树, 它的结点的第一个孩子如果存在就是唯一的,它的右兄弟如果存在也是唯一的。 因此,我们设置两个指针,分别指向该结点的第一个孩子和此结点的右兄弟。

在这里插入图片描述

/*树的孩子兄弟表示法结构定义*/
typedef struct TreeNode
{
	TElemtype data;
	struct TreeNode *firstchild, *rightsib;
} TreeNode,* pTreeNode;

1.4 树在实际中的应用

在这里插入图片描述

二、二叉树的概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  • 或者为空
  • 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述

从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:
在这里插入图片描述

2.2 特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
    在这里插入图片描述

2.3 二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2^h-1
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为 n2,则有 n0=n2 +1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log (n+1) (ps: 是log以2为底,n+1为对数)
  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
    • 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
    • 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
    • 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

  1. 顺序存储
    顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
    在这里插入图片描述2. 链式存储
    二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 **通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。**链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链。
    在这里插入图片描述

三、二叉树的顺序结构及其实现

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
具体的实现及应用请查看:【数据结构】08.堆及堆的应用

四、二叉树的链式结构及其实现

4.1 二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

4.1.1 前序遍历

//根 左子树 右子树
void PrevOrder(pTreeNode root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	printf("%d ", root->val);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

下图为递归过程:
在这里插入图片描述

4.1.2 中序遍历

//左子树 根 右子树
void InOrder(pTreeNode root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->val);
	InOrder(root->right);
}

下面为递归过程:
在这里插入图片描述

4.1.3 后序遍历

//左子树 右子树 根
void PostOrder(pTreeNode root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->val);
}

下面为递归过程:
在这里插入图片描述

4.2.4 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历
图示:
在这里插入图片描述

我们这里介入队列来进行二叉树的前序遍历。

// 层序遍历
void LevelOrder(pTreeNode root)
{
	Queue q;
	QueueInit(&q);
	if (root)
	{
		QueuePush(&q, root);
	}
	while (!QueueEmpty(&q))
	{
		pTreeNode front = QueueFront(&q);
		QueuePop(&q);
		if (front == NULL)
		{
			printf("NULL ");
		}
		else
		{
			printf("%d ", front->val);
			QueuePush(&q, front->left);
			QueuePush(&q, front->right);
		}
	}
	QueueDestory(&q);
}

4.1 二叉树的创建与销毁

二叉树的创建与销毁,我们以二叉树遍历为例题。

//二叉树的创建
struct TreeNode* Creat(char* arr,int n,int* i)
{ 
    if(*i<n&&arr[*i]=='#')
    {
        (*i)++;
        return NULL;
    }
    
    TreeNode* newnode=(TreeNode*)malloc(sizeof(TreeNode));
    newnode->left=NULL;
    newnode->right=NULL;

    newnode->val=arr[(*i)++];
    newnode->left=Creat(arr,n,i);
    newnode->right=Creat(arr,n,i);
    
    return newnode;
}
//二叉树的销毁
void TreeDestroy(struct TreeNode* root)
{
    if(root==NULL)
    {
        return;
    }
    TreeDestroy(root->left);
    TreeDestroy(root->right);
    free(root);
}

4.3 二叉树的其他操作

以下的操作均是沿着遍历的思想展开的。

// 二叉树节点个数
int TreeSize(pTreeNode root)
{
	if (root == NULL)
	{
		return 0;
	}
	return TreeSize(root->left) + TreeSize(root->right) + 1;
}
// 二叉树叶子节点个数
int TreeLeafSize(pTreeNode root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}
	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}
// 二叉树第k层节点个数
int TreeLevelKSize(pTreeNode root, int k)
{
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	return TreeLevelKSize(root->left, k - 1) + TreeLevelKSize(root->right, k - 1);
}
// 二叉树查找值为x的节点
pTreeNode TreeFind(pTreeNode root, TreeDataType x)
{

	if (root == NULL)
	{
		return NULL;
	}
	//相等就返回
	if (root->val == x)
		return root;
	//找左子树
	pTreeNode left=TreeFind(root->left, x);
	if (left)
	{
		return left;
	}
	//找右子树
	pTreeNode right = TreeFind(root->right, x);
	if (right)
	{
		return right;
	}
	//都没找到
	return NULL;
}
//二叉树的高度
int TreeHeight(pTreeNode root)
{
	if (root == NULL)
	{
		return 0;
	}
	int max_left = TreeHeight(root->left) ;
	int max_right = TreeHeight(root->right);
	return max_left > max_right ? max_left + 1 : max_right + 1;
}
//判断是否是完全二叉树
bool TreeComplete(pTreeNode root)
{
	Queue q;
	QueueInit(&q);
	if (root)
	{
		QueuePush(&q, root);
	}
	while (!QueueEmpty(&q))
	{
		pTreeNode front = QueueFront(&q);
		QueuePop(&q);
		if (front == NULL)
		{
			break;
		}
		else
		{
			QueuePush(&q, front->left);
			QueuePush(&q, front->right);
		}
	}
	while (!QueueEmpty(&q))
	{
		pTreeNode front = QueueFront(&q);
		QueuePop(&q);
		if (front)
		{
			QueueDestory(&q);
			return false;
		}
	}
	QueueDestory(&q);
	return true;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903343.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java 公共字段填充

公共字段填充 1、mybatis-plus2、mybatis 使用注解加aop2.1 自定义注解2.2 自定义切面类2.3 在mapper上添加上自定义的注解 1、mybatis-plus 通过在类上使用如下的注解 TableField(fill FieldFill.INSERT) 是 MyBatis-Plus 中的注解&#xff0c;用于自动填充字段的值。MyBat…

【Python实战因果推断】25_倾向分5

目录 Stabilized Propensity Weights Pseudo-Populations Stabilized Propensity Weights 将经过处理的样本按 加权&#xff0c;就会产生一个与原始样本大小相同的伪群体&#xff0c;但就好像每个人都经过了处理。这意味着权重之和与原始样本大小大致相同。同样&#xff0c…

可视化作品集(08):能源电力领域

能源电力领域的可视化大屏&#xff0c;有着巨大的用武之地&#xff0c;不要小看它。 监控能源生产和消耗情况&#xff1a; 通过可视化大屏&#xff0c;可以实时监控能源生产和消耗情况&#xff0c;包括发电量、能源供应情况、能源消耗情况等&#xff0c;帮助管理者及时了解能…

llama2阅读: logits是什么?

Logits是一个在深度学习中&#xff0c;几乎一直都有的概念&#xff0c;它意味着模型unnormalized final scores. 然后你可以通过softmax得到模型针对你class的概率分布。 而在llama2的代码中&#xff0c;同样有logits的使用&#xff0c;那么针对llama2&#xff0c;logits的作用…

力扣考研经典题 反转链表

核心思想 头插法&#xff1a; 不断的将cur指针所指向的节点放到头节点之前&#xff0c;然后头节点指向cur节点&#xff0c;因为最后返回的是head.next 。 解题思路 1.如果头节点是空的&#xff0c;或者是只有一个节点&#xff0c;只需要返回head节点即可。 if (head null …

触底加载的两种思路(以vue3前端和nodejs后端为例)

一:首先,nodejs后端的代码都是一样的. 需要前端返回page参数,然后nodejs逻辑进行处理,截取页数和每页条数和总条数, 总条数用来作为判断是否有数据的条件,也可以不用,注意看下文 一:不用获取容器高度的. pinia中进行的axios请求处理 在vue文件中进行pinia中数据的导入,继续进…

初学Spring之 AOP 面向切面编程

AOP&#xff08;Aspect Oriented Programming&#xff09;面向切面编程 通过预编译方式和运行期间动态代理实现程序功能的统一维护的一种技术 是面向对象&#xff08;OOP&#xff09;的延续 AOP 在 Spring 中的作用&#xff1a; 1.提供声明式事务 2.允许用户自定义切面 导…

ISO 50001:企业节能减排与可持续发展的双赢之道

在全球气候变化日益严峻、资源日益稀缺的今天&#xff0c;能源管理已成为企业可持续发展不可或缺的一部分。ISO 50001作为国际能源管理体系标准&#xff0c;正在全球范围内被越来越多的企业采纳。它不仅帮助企业提高能源效率&#xff0c;减少能源消耗&#xff0c;还在多个方面对…

Java的基础语法

叠甲&#xff1a;以下文章主要是依靠我的实际编码学习中总结出来的经验之谈&#xff0c;求逻辑自洽&#xff0c;不能百分百保证正确&#xff0c;有错误、未定义、不合适的内容请尽情指出&#xff01; 文章目录 1.第一份程序1.1.代码编写1.2.代码运行1.2.1.命令行编译1.2.2.IEDA…

存储结构与管理磁盘

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 目录 一、一切从“/”开始 二、物理设备的命名规则 三、文件系统与数据资料 四、挂载硬件设备 五、添加硬盘设备 六、添加交换分区 七、磁盘容…

Linux系统的介绍和常用命令

文章目录 介绍常用命令文件和目录操作文件内容操作系统管理命令网络命令 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&#xff1a;Liunx系统 ✨文章内容&#xff1a;Liunx系统介绍 &…

C语言 | Leetcode C语言题解之第217题存在重复元素

题目&#xff1a; 题解&#xff1a; struct hashTable {int key;UT_hash_handle hh; };bool containsDuplicate(int* nums, int numsSize) {struct hashTable* set NULL;for (int i 0; i < numsSize; i) {struct hashTable* tmp;HASH_FIND_INT(set, nums i, tmp);if (tm…

css导航栏遮挡住垂直滚动条,以及100vw引起的横向滚动条出现

滚动条被导航栏遮住问题 解决前 解决过程 一开始想要body的宽度为整个视口的宽度 100vw view width 不过出现了横向滚动条 于是乎想着给所有元素增加 x轴溢出时隐藏 问题解决&#xff0c;不过顶部的导航栏由于设置了fixed 又把右边导航栏挡住了 可能因为 body 占100视口宽度…

简单且循序渐进地查找软件中Bug的实用方法

“Bug”这个词常常让许多开发者感到头疼。即使是经验丰富、技术娴熟的开发人员在开发过程中也难以避免遭遇到 Bug。 软件中的故障会让程序员感到挫败。我相信在你的软件开发生涯中&#xff0c;也曾遇到过一些难以排查的问题。软件中的错误可能会导致项目无法按时交付。因此&…

【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

【C++】map和set详解

目录 1. 关联式容器 2. 键值对pair 3. 树形结构的关联式容器 4. set 4.1 set的介绍 4.2 set的构造 4.3 set的迭代器 4.4 set的容量 4.5 set的常用函数 5. multiset 6. map 6.1 map的介绍 6.2 map的构造 6.3 map的迭代器 6.4 map的容量 6.5 map的operator[] 6.6…

【学习笔记】程序设计竞赛

程序设计竞赛 文章目录 程序设计竞赛0x00 基本操作指南0x01 算法分析0x02 STL和基本数据结构栈队列集合map 0x03 排序插入排序归并排序&#xff08;Merge Sort)快速排序 0x04 搜索技术BFSDFS回溯与剪枝 深度迭代ID A*A star双向广搜 0x05 递推方程0x06 高级数据结构并查集二叉树…

STM32快速复习(八)SPI通信

文章目录 前言一、SPI是什么&#xff1f;SPI的硬件电路&#xff1f;SPI发送的时序&#xff1f;二、库函数二、库函数示例代码总结 前言 SPI和IIC通信算是我在大学和面试中用的最多&#xff0c;问的最多的通信协议 IIC问到了&#xff0c;一般SPI也一定会问到。 SPI相对于IIC多了…

HTTP请求响应/与HTTPS区别

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;和HTTPS&#xff08;Hypertext Transfer Protocol Secure&#xff09;是用于在计算机网络上传输信息的两种协议。 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;: HTTP 是一种用于传输超文本的应用层协议…

Go 依赖注入设计模式

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…