【数据结构基础】树 - 二叉搜索树(BST)

news2024/12/23 17:57:23
本文主要介绍 二叉树中最基本的二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。

BST的定义

在二叉查找树中:

  • 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

  • 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

  • 任意节点的左、右子树也分别为二叉查找树。

  • 没有键值相等的节点。

动画效果请参考 BST

BST的实现

节点

BSTree是二叉树,它保存了二叉树的根节点mRoot;mRoot是BSTNode类型,而BSTNode是二叉查找树的节点,它是BSTree的内部类。BSTNode包含二叉查找树的几个基本信息:

  • key -- 它是关键字,是用来对二叉查找树的节点进行排序的。

  • left -- 它指向当前节点的左孩子。

  • right -- 它指向当前节点的右孩子。

  • parent -- 它指向当前节点的父结点。

public class BSTree<T extends Comparable<T>> {

    private BSTNode<T> mRoot;    // 根结点

    public class BSTNode<T extends Comparable<T>> {
        T key;                // 关键字(键值)
        BSTNode<T> left;      // 左孩子
        BSTNode<T> right;     // 右孩子
        BSTNode<T> parent;    // 父结点

        public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
            this.key = key;
            this.parent = parent;
            this.left = left;
            this.right = right;
        }
    }

        ......
}

遍历

这里讲解前序遍历、中序遍历、后序遍历3种方式。

前序遍历

若二叉树非空,则执行以下操作:

  • 访问根结点;

  • 先序遍历左子树;

  • 先序遍历右子树。

private void preOrder(BSTNode<T> tree) {
    if(tree != null) {
        System.out.print(tree.key+" ");
        preOrder(tree.left);
        preOrder(tree.right);
    }
}

public void preOrder() {
    preOrder(mRoot);
}

中序遍历

若二叉树非空,则执行以下操作:

  • 中序遍历左子树;

  • 访问根结点;

  • 中序遍历右子树。

private void inOrder(BSTNode<T> tree) {
    if(tree != null) {
        inOrder(tree.left);
        System.out.print(tree.key+" ");
        inOrder(tree.right);
    }
}

public void inOrder() {
    inOrder(mRoot);
}

后序遍历

若二叉树非空,则执行以下操作:

  • 后序遍历左子树;

  • 后序遍历右子树;

  • 访问根结点。

private void postOrder(BSTNode<T> tree) {
    if(tree != null)
    {
        postOrder(tree.left);
        postOrder(tree.right);
        System.out.print(tree.key+" ");
    }
}

public void postOrder() {
    postOrder(mRoot);
}

看看下面这颗树的各种遍历方式:

对于上面的二叉树而言,

  • 前序遍历结果: 8 3 1 6 4 7 10 14 13

  • 中序遍历结果: 1 3 4 6 7 8 10 13 14

  • 后序遍历结果: 1 4 7 6 3 13 14 10 8

查找

  • 递归版本的代码

/*
 * (递归实现)查找"二叉树x"中键值为key的节点
 */
private BSTNode<T> search(BSTNode<T> x, T key) {
    if (x==null)
        return x;

    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return search(x.left, key);
    else if (cmp > 0)
        return search(x.right, key);
    else
        return x;
}

public BSTNode<T> search(T key) {
    return search(mRoot, key);
}
  • 非递归版本的代码

/*
 * (非递归实现)查找"二叉树x"中键值为key的节点
 */
private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
    while (x!=null) {
        int cmp = key.compareTo(x.key);

        if (cmp < 0) 
            x = x.left;
        else if (cmp > 0) 
            x = x.right;
        else
            return x;
    }

    return x;
}

public BSTNode<T> iterativeSearch(T key) {
    return iterativeSearch(mRoot, key);
}

最大值和最小值

  • 查找最大结点

/* 
 * 查找最大结点: 返回tree为根结点的二叉树的最大结点。
 */
private BSTNode<T> maximum(BSTNode<T> tree) {
    if (tree == null)
        return null;

    while(tree.right != null)
        tree = tree.right;
    return tree;
}

public T maximum() {
    BSTNode<T> p = maximum(mRoot);
    if (p != null)
        return p.key;

    return null;
}
  • 查找最小结点

/* 
 * 查找最小结点: 返回tree为根结点的二叉树的最小结点。
 */
private BSTNode<T> minimum(BSTNode<T> tree) {
    if (tree == null)
        return null;

    while(tree.left != null)
        tree = tree.left;
    return tree;
}

public T minimum() {
    BSTNode<T> p = minimum(mRoot);
    if (p != null)
        return p.key;

    return null;
}

前驱和后继

节点的前驱: 是该节点的左子树中的最大节点。 节点的后继: 是该节点的右子树中的最小节点。

  • 查找前驱节点

/* 
 * 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
 */
public BSTNode<T> predecessor(BSTNode<T> x) {
    // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
    if (x.left != null)
        return maximum(x.left);

    // 如果x没有左孩子。则x有以下两种可能: 
    // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
    // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
    BSTNode<T> y = x.parent;
    while ((y!=null) && (x==y.left)) {
        x = y;
        y = y.parent;
    }

    return y;
}
  • 查找后继节点

/* 
 * 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
 */
public BSTNode<T> successor(BSTNode<T> x) {
    // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
    if (x.right != null)
        return minimum(x.right);

    // 如果x没有右孩子。则x有以下两种可能: 
    // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
    // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
    BSTNode<T> y = x.parent;
    while ((y!=null) && (x==y.right)) {
        x = y;
        y = y.parent;
    }

    return y;
}

插入

/* 
 * 将结点插入到二叉树中
 *
 * 参数说明: 
 *     tree 二叉树的
 *     z 插入的结点
 */
private void insert(BSTree<T> bst, BSTNode<T> z) {
    int cmp;
    BSTNode<T> y = null;
    BSTNode<T> x = bst.mRoot;

    // 查找z的插入位置
    while (x != null) {
        y = x;
        cmp = z.key.compareTo(x.key);
        if (cmp < 0)
            x = x.left;
        else
            x = x.right;
    }

    z.parent = y;
    if (y==null)
        bst.mRoot = z;
    else {
        cmp = z.key.compareTo(y.key);
        if (cmp < 0)
            y.left = z;
        else
            y.right = z;
    }
}

/* 
 * 新建结点(key),并将其插入到二叉树中
 *
 * 参数说明: 
 *     tree 二叉树的根结点
 *     key 插入结点的键值
 */
public void insert(T key) {
    BSTNode<T> z=new BSTNode<T>(key,null,null,null);

    // 如果新建结点失败,则返回。
    if (z != null)
        insert(this, z);
}

删除

/* 
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明: 
 *     bst 二叉树
 *     z 删除的结点
 */
private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
    BSTNode<T> x=null;
    BSTNode<T> y=null;

    if ((z.left == null) || (z.right == null) )
        y = z;
    else
        y = successor(z);

    if (y.left != null)
        x = y.left;
    else
        x = y.right;

    if (x != null)
        x.parent = y.parent;

    if (y.parent == null)
        bst.mRoot = x;
    else if (y == y.parent.left)
        y.parent.left = x;
    else
        y.parent.right = x;

    if (y != z) 
        z.key = y.key;

    return y;
}

/* 
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明: 
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
public void remove(T key) {
    BSTNode<T> z, node; 

    if ((z = search(mRoot, key)) != null)
        if ( (node = remove(this, z)) != null)
            node = null;
}

打印

/*
 * 打印"二叉查找树"
 *
 * key        -- 节点的键值 
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
private void print(BSTNode<T> tree, T key, int direction) {

    if(tree != null) {

        if(direction==0)    // tree是根节点
            System.out.printf("%2d is root\n", tree.key);
        else                // tree是分支节点
            System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

        print(tree.left, tree.key, -1);
        print(tree.right,tree.key,  1);
    }
}

public void print() {
    if (mRoot != null)
        print(mRoot, mRoot.key, 0);
}

销毁

/*
 * 销毁二叉树
 */
private void destroy(BSTNode<T> tree) {
    if (tree==null)
        return ;

    if (tree.left != null)
        destroy(tree.left);
    if (tree.right != null)
        destroy(tree.right);

    tree=null;
}

public void clear() {
    destroy(mRoot);
    mRoot = null;
}

测试程序

下面对测试程序的流程进行分析!

  • 新建"二叉查找树"root。

  • 向二叉查找树中依次插入1,5,4,3,2,6 。如下图所示:

  • 遍历和查找

插入1,5,4,3,2,6之后,得到的二叉查找树如下:

前序遍历结果: 154326 
中序遍历结果: 123456 
后序遍历结果: 234651 
最小值是1,而最大值是6。
  • 删除节点4。如下图所示:

  • 重新遍历该二叉查找树。

中序遍历结果: 1 2 4 5 6

代码和测试代码

代码实现

/**
 * Java 语言: 二叉查找树
 *
 * @author skywang
 * @date 2013/11/07
 */

public class BSTree<T extends Comparable<T>> {

    private BSTNode<T> mRoot;    // 根结点

    public class BSTNode<T extends Comparable<T>> {
        T key;                // 关键字(键值)
        BSTNode<T> left;    // 左孩子
        BSTNode<T> right;    // 右孩子
        BSTNode<T> parent;    // 父结点

        public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
            this.key = key;
            this.parent = parent;
            this.left = left;
            this.right = right;
        }

        public T getKey() {
            return key;
        }

        public String toString() {
            return "key:"+key;
        }
    }

    public BSTree() {
        mRoot=null;
    }

    /*
     * 前序遍历"二叉树"
     */
    private void preOrder(BSTNode<T> tree) {
        if(tree != null) {
            System.out.print(tree.key+" ");
            preOrder(tree.left);
            preOrder(tree.right);
        }
    }

    public void preOrder() {
        preOrder(mRoot);
    }

    /*
     * 中序遍历"二叉树"
     */
    private void inOrder(BSTNode<T> tree) {
        if(tree != null) {
            inOrder(tree.left);
            System.out.print(tree.key+" ");
            inOrder(tree.right);
        }
    }

    public void inOrder() {
        inOrder(mRoot);
    }


    /*
     * 后序遍历"二叉树"
     */
    private void postOrder(BSTNode<T> tree) {
        if(tree != null)
        {
            postOrder(tree.left);
            postOrder(tree.right);
            System.out.print(tree.key+" ");
        }
    }

    public void postOrder() {
        postOrder(mRoot);
    }


    /*
     * (递归实现)查找"二叉树x"中键值为key的节点
     */
    private BSTNode<T> search(BSTNode<T> x, T key) {
        if (x==null)
            return x;

        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            return search(x.left, key);
        else if (cmp > 0)
            return search(x.right, key);
        else
            return x;
    }

    public BSTNode<T> search(T key) {
        return search(mRoot, key);
    }

    /*
     * (非递归实现)查找"二叉树x"中键值为key的节点
     */
    private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
        while (x!=null) {
            int cmp = key.compareTo(x.key);

            if (cmp < 0) 
                x = x.left;
            else if (cmp > 0) 
                x = x.right;
            else
                return x;
        }

        return x;
    }

    public BSTNode<T> iterativeSearch(T key) {
        return iterativeSearch(mRoot, key);
    }

    /* 
     * 查找最小结点: 返回tree为根结点的二叉树的最小结点。
     */
    private BSTNode<T> minimum(BSTNode<T> tree) {
        if (tree == null)
            return null;

        while(tree.left != null)
            tree = tree.left;
        return tree;
    }

    public T minimum() {
        BSTNode<T> p = minimum(mRoot);
        if (p != null)
            return p.key;

        return null;
    }
     
    /* 
     * 查找最大结点: 返回tree为根结点的二叉树的最大结点。
     */
    private BSTNode<T> maximum(BSTNode<T> tree) {
        if (tree == null)
            return null;

        while(tree.right != null)
            tree = tree.right;
        return tree;
    }

    public T maximum() {
        BSTNode<T> p = maximum(mRoot);
        if (p != null)
            return p.key;

        return null;
    }

    /* 
     * 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
     */
    public BSTNode<T> successor(BSTNode<T> x) {
        // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
        if (x.right != null)
            return minimum(x.right);

        // 如果x没有右孩子。则x有以下两种可能: 
        // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
        // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
        BSTNode<T> y = x.parent;
        while ((y!=null) && (x==y.right)) {
            x = y;
            y = y.parent;
        }

        return y;
    }
     
    /* 
     * 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
     */
    public BSTNode<T> predecessor(BSTNode<T> x) {
        // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
        if (x.left != null)
            return maximum(x.left);

        // 如果x没有左孩子。则x有以下两种可能: 
        // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
        // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
        BSTNode<T> y = x.parent;
        while ((y!=null) && (x==y.left)) {
            x = y;
            y = y.parent;
        }

        return y;
    }

    /* 
     * 将结点插入到二叉树中
     *
     * 参数说明: 
     *     tree 二叉树的
     *     z 插入的结点
     */
    private void insert(BSTree<T> bst, BSTNode<T> z) {
        int cmp;
        BSTNode<T> y = null;
        BSTNode<T> x = bst.mRoot;

        // 查找z的插入位置
        while (x != null) {
            y = x;
            cmp = z.key.compareTo(x.key);
            if (cmp < 0)
                x = x.left;
            else
                x = x.right;
        }

        z.parent = y;
        if (y==null)
            bst.mRoot = z;
        else {
            cmp = z.key.compareTo(y.key);
            if (cmp < 0)
                y.left = z;
            else
                y.right = z;
        }
    }

    /* 
     * 新建结点(key),并将其插入到二叉树中
     *
     * 参数说明: 
     *     tree 二叉树的根结点
     *     key 插入结点的键值
     */
    public void insert(T key) {
        BSTNode<T> z=new BSTNode<T>(key,null,null,null);

        // 如果新建结点失败,则返回。
        if (z != null)
            insert(this, z);
    }

    /* 
     * 删除结点(z),并返回被删除的结点
     *
     * 参数说明: 
     *     bst 二叉树
     *     z 删除的结点
     */
    private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
        BSTNode<T> x=null;
        BSTNode<T> y=null;

        if ((z.left == null) || (z.right == null) )
            y = z;
        else
            y = successor(z);

        if (y.left != null)
            x = y.left;
        else
            x = y.right;

        if (x != null)
            x.parent = y.parent;

        if (y.parent == null)
            bst.mRoot = x;
        else if (y == y.parent.left)
            y.parent.left = x;
        else
            y.parent.right = x;

        if (y != z) 
            z.key = y.key;

        return y;
    }

    /* 
     * 删除结点(z),并返回被删除的结点
     *
     * 参数说明: 
     *     tree 二叉树的根结点
     *     z 删除的结点
     */
    public void remove(T key) {
        BSTNode<T> z, node; 

        if ((z = search(mRoot, key)) != null)
            if ( (node = remove(this, z)) != null)
                node = null;
    }

    /*
     * 销毁二叉树
     */
    private void destroy(BSTNode<T> tree) {
        if (tree==null)
            return ;

        if (tree.left != null)
            destroy(tree.left);
        if (tree.right != null)
            destroy(tree.right);

        tree=null;
    }

    public void clear() {
        destroy(mRoot);
        mRoot = null;
    }

    /*
     * 打印"二叉查找树"
     *
     * key        -- 节点的键值 
     * direction  --  0,表示该节点是根节点;
     *               -1,表示该节点是它的父结点的左孩子;
     *                1,表示该节点是它的父结点的右孩子。
     */
    private void print(BSTNode<T> tree, T key, int direction) {

        if(tree != null) {

            if(direction==0)    // tree是根节点
                System.out.printf("%2d is root\n", tree.key);
            else                // tree是分支节点
                System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left");

            print(tree.left, tree.key, -1);
            print(tree.right,tree.key,  1);
        }
    }

    public void print() {
        if (mRoot != null)
            print(mRoot, mRoot.key, 0);
    }
}

测试代码

/**
 * Java 语言: 二叉查找树
 *
 * @author skywang
 * @date 2013/11/07
 */
public class BSTreeTest {

    private static final int arr[] = {1,5,4,3,2,6};

    public static void main(String[] args) {
        int i, ilen;
        BSTree<Integer> tree=new BSTree<Integer>();

        System.out.print("== 依次添加: ");
        ilen = arr.length;
        for(i=0; i<ilen; i++) {
            System.out.print(arr[i]+" ");
            tree.insert(arr[i]);
        }

        System.out.print("\n== 前序遍历: ");
        tree.preOrder();

        System.out.print("\n== 中序遍历: ");
        tree.inOrder();

        System.out.print("\n== 后序遍历: ");
        tree.postOrder();
        System.out.println();

        System.out.println("== 最小值: "+ tree.minimum());
        System.out.println("== 最大值: "+ tree.maximum());
        System.out.println("== 树的详细信息: ");
        tree.print();

        System.out.print("\n== 删除根节点: "+ arr[3]);
        tree.remove(arr[3]);

        System.out.print("\n== 中序遍历: ");
        tree.inOrder();
        System.out.println();

        // 销毁二叉树
        tree.clear();
    }
}

测试结果

== 依次添加: 1 5 4 3 2 6 
== 前序遍历: 1 5 4 3 2 6 
== 中序遍历: 1 2 3 4 5 6 
== 后序遍历: 2 3 4 6 5 1 
== 最小值: 1
== 最大值: 6
== 树的详细信息: 
is root
is  1's  right child
is  5's   left child
is  4's   left child
is  3's   left child
is  5's  right child

== 删除根节点: 3
== 中序遍历: 1 2 4 5 6

BST相关题目

二叉查找树(BST): 根节点大于等于左子树所有节点,小于等于右子树所有节点。

二叉查找树中序遍历有序。

修剪二叉查找树

669. Trim a Binary Search Tree (Easy)

Input:

    3
   / \
  0   4
   \
    2
   /
  1

  L = 1
  R = 3

Output:

      3
     /
   2
  /
 1

题目描述: 只保留值在 L ~ R 之间的节点

public TreeNode trimBST(TreeNode root, int L, int R) {
    if (root == null) return null;
    if (root.val > R) return trimBST(root.left, L, R);
    if (root.val < L) return trimBST(root.right, L, R);
    root.left = trimBST(root.left, L, R);
    root.right = trimBST(root.right, L, R);
    return root;
}

寻找二叉查找树的第 k 个元素

230. Kth Smallest Element in a BST (Medium)

中序遍历解法:

private int cnt = 0;
private int val;

public int kthSmallest(TreeNode root, int k) {
    inOrder(root, k);
    return val;
}

private void inOrder(TreeNode node, int k) {
    if (node == null) return;
    inOrder(node.left, k);
    cnt++;
    if (cnt == k) {
        val = node.val;
        return;
    }
    inOrder(node.right, k);
}

递归解法:

public int kthSmallest(TreeNode root, int k) {
    int leftCnt = count(root.left);
    if (leftCnt == k - 1) return root.val;
    if (leftCnt > k - 1) return kthSmallest(root.left, k);
    return kthSmallest(root.right, k - leftCnt - 1);
}

private int count(TreeNode node) {
    if (node == null) return 0;
    return 1 + count(node.left) + count(node.right);
}

把二叉查找树每个节点的值都加上比它大的节点的值

Convert BST to Greater Tree (Easy)

Input: The root of a Binary Search Tree like this:

              5
            /   \
           2     13

Output: The root of a Greater Tree like this:

             18
            /   \
          20     13

先遍历右子树。

private int sum = 0;

public TreeNode convertBST(TreeNode root) {
    traver(root);
    return root;
}

private void traver(TreeNode node) {
    if (node == null) return;
    traver(node.right);
    sum += node.val;
    node.val = sum;
    traver(node.left);
}

二叉查找树的最近公共祖先

235. Lowest Common Ancestor of a Binary Search Tree (Easy)

        _______6______
      /                \
  ___2__             ___8__
 /      \           /      \
0        4         7        9
        /  \
       3   5

For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
    if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
    return root;
}

二叉树的最近公共祖先

236. Lowest Common Ancestor of a Binary Tree (Medium)

       _______3______
      /              \
  ___5__           ___1__
 /      \         /      \
6        2       0        8
        /  \
       7    4

For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
    if (root == null || root == p || root == q) return root;
    TreeNode left = lowestCommonAncestor(root.left, p, q);
    TreeNode right = lowestCommonAncestor(root.right, p, q);
    return left == null ? right : right == null ? left : root;
}

从有序数组中构造二叉查找树

108. Convert Sorted Array to Binary Search Tree (Easy)

public TreeNode sortedArrayToBST(int[] nums) {
    return toBST(nums, 0, nums.length - 1);
}

private TreeNode toBST(int[] nums, int sIdx, int eIdx){
    if (sIdx > eIdx) return null;
    int mIdx = (sIdx + eIdx) / 2;
    TreeNode root = new TreeNode(nums[mIdx]);
    root.left =  toBST(nums, sIdx, mIdx - 1);
    root.right = toBST(nums, mIdx + 1, eIdx);
    return root;
}

根据有序链表构造平衡的二叉查找树

109. Convert Sorted List to Binary Search Tree (Medium)

Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5
public TreeNode sortedListToBST(ListNode head) {
    if (head == null) return null;
    if (head.next == null) return new TreeNode(head.val);
    ListNode preMid = preMid(head);
    ListNode mid = preMid.next;
    preMid.next = null;  // 断开链表
    TreeNode t = new TreeNode(mid.val);
    t.left = sortedListToBST(head);
    t.right = sortedListToBST(mid.next);
    return t;
}

private ListNode preMid(ListNode head) {
    ListNode slow = head, fast = head.next;
    ListNode pre = head;
    while (fast != null && fast.next != null) {
        pre = slow;
        slow = slow.next;
        fast = fast.next.next;
    }
    return pre;
}

在二叉查找树中寻找两个节点,使它们的和为一个给定值

653. Two Sum IV - Input is a BST (Easy)

Input:

    5
   / \
  3   6
 / \   \
2   4   7

Target = 9

Output: True

使用中序遍历得到有序数组之后,再利用双指针对数组进行查找。

应该注意到,这一题不能用分别在左右子树两部分来处理这种思想,因为两个待求的节点可能分别在左右子树中。

public boolean findTarget(TreeNode root, int k) {
    List<Integer> nums = new ArrayList<>();
    inOrder(root, nums);
    int i = 0, j = nums.size() - 1;
    while (i < j) {
        int sum = nums.get(i) + nums.get(j);
        if (sum == k) return true;
        if (sum < k) i++;
        else j--;
    }
    return false;
}

private void inOrder(TreeNode root, List<Integer> nums) {
    if (root == null) return;
    inOrder(root.left, nums);
    nums.add(root.val);
    inOrder(root.right, nums);
}

在二叉查找树中查找两个节点之差的最小绝对值

530. Minimum Absolute Difference in BST (Easy)

Input:

   1
    \
     3
    /
   2

Output:

1

利用二叉查找树的中序遍历为有序的性质,计算中序遍历中临近的两个节点之差的绝对值,取最小值。

private int minDiff = Integer.MAX_VALUE;
private TreeNode preNode = null;

public int getMinimumDifference(TreeNode root) {
    inOrder(root);
    return minDiff;
}

private void inOrder(TreeNode node) {
    if (node == null) return;
    inOrder(node.left);
    if (preNode != null) minDiff = Math.min(minDiff, node.val - preNode.val);
    preNode = node;
    inOrder(node.right);
}

寻找二叉查找树中出现次数最多的值

501. Find Mode in Binary Search Tree (Easy)

   1
    \
     2
    /
   2

return [2].

答案可能不止一个,也就是有多个值出现的次数一样多。

private int curCnt = 1;
private int maxCnt = 1;
private TreeNode preNode = null;

public int[] findMode(TreeNode root) {
    List<Integer> maxCntNums = new ArrayList<>();
    inOrder(root, maxCntNums);
    int[] ret = new int[maxCntNums.size()];
    int idx = 0;
    for (int num : maxCntNums) {
        ret[idx++] = num;
    }
    return ret;
}

private void inOrder(TreeNode node, List<Integer> nums) {
    if (node == null) return;
    inOrder(node.left, nums);
    if (preNode != null) {
        if (preNode.val == node.val) curCnt++;
        else curCnt = 1;
    }
    if (curCnt > maxCnt) {
        maxCnt = curCnt;
        nums.clear();
        nums.add(node.val);
    } else if (curCnt == maxCnt) {
        nums.add(node.val);
    }
    preNode = node;
    inOrder(node.right, nums);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/190308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

入门力扣自学笔记233 C++ (题目编号:2319)

2319. 判断矩阵是否是一个 X 矩阵 题目&#xff1a; 如果一个正方形矩阵满足下述 全部 条件&#xff0c;则称之为一个 X 矩阵 &#xff1a; 矩阵对角线上的所有元素都 不是 0 矩阵中所有其他元素都是 0 给你一个大小为 n x n 的二维整数数组 grid &#xff0c;表示一个正方形…

GitHub2022年十大热门编程语言榜单(上)

全球知名代码托管平台 GitHub发布的2022年GitHub Octoverse年度报告公布了全球最流行的十大编程语言&#xff0c;其中JavaScript蝉联第一&#xff0c;Python位列次席。 编程是技术革新的核心&#xff0c;对于所有的编程开发人员来说&#xff0c;对世界范围内编程语言发展和趋势…

搭WIFI拓扑有感

搭拓扑有感 人类革命&#xff0c;一场N*N的MIMO 关键技术&#xff1a;男女搭配 结婚生子 男女搭配&#xff1a;以搭档为单位调度&#xff0c;节省整体开资&#xff0c;克服短时间的寂寞 CP沟通&#xff1a;在说话间加一个保护间隔&#xff0c;不给对方太大的压力 结婚生子 …

Live800:影响在线客服系统稳定性的因素,有哪些?

稳定性的在线客服系统对企业来说是至关重要的&#xff0c;可以说是企业选择在线客服系统时首要考量的一个因素。一个不稳定的在线客服系统&#xff0c;即使价格再便宜&#xff0c;恐怕也无法满足企业搭建在线客服系统的初衷。想象一下当客户正在咨询问题时&#xff0c;客服系统…

十三、表数据的增、删、改操作

文章目录一、插入数据1.1 使用 INSERT…VALUES 语句插入数据1.2 使用 INSERT…SET 语句插入数据1.3 使用 INSERT...SELECT 语句插入查询结果二、修改(更新)数据三、删除数据3.1 通过 DELETE 语句删除数据3.2 通过 TRUNCATE TABLE 语句删除数据3.3 DELETE 语句和 TRUNCATE TABLE…

爬虫实例(二)—— 爬取高清4K图片

大家好&#xff0c;我是 Enovo飞鱼&#xff0c;今天继续分享一个爬虫案例&#xff0c;爬取高清4K图片&#xff0c;加油&#x1f4aa;。 目录 前言 增加异常处理 增加代码灵活性 基本环境配置 爬取目标网站 分析网站页面 具体代码实现 图片下载示例 感谢支持&#x1f6…

ABB机器人设置有效载荷的2种方法具体步骤(直接输入法+自动识别推算法1)

ABB机器人设置有效载荷的2种方法具体步骤(直接输入法+自动识别推算法1) 为什么要设置有效载荷Loaddata? 对于搬运应用的机器人只有设定正确的工具和载荷数据,机器人才能正确的工作; 对于搬运比较重的产品,或工具的重量也比较重,需要设置工具及搬运对象的重心和重量; 对…

如何用ChatGPT高效完成工作

如何用ChatGPT高效完成工作 过完年刚开工&#xff0c;很多人还没有从假期综合症中走出来&#xff0c;不想上班&#xff0c;总想摸鱼&#xff0c;可是手上的工作还是要完成的。都2023年了&#xff0c;是时候让ChatGPT来帮我们完成工作了&#xff01;本文将教你如何用ChatGPT高效…

Unity-Tcp-网络聊天功能(二): 登录与注册

5.客户端实现注册与登录接口创建好UI接下来定义发给客户端的协议等public class MessageHelper {//发送登录的消息给服务器 1002public void SendLoginMsg(string account, string pwd){LoginMsgC2S msg new LoginMsgC2S();msg.account account;msg.password pwd;var str J…

java程序cpu飙高定位

1 定位过程 CPU飙升问题定位的一般步骤是&#xff1a; 首先通过top指令查看当前占用CPU较高的进程PID查看当前进程消耗资源的线程PID&#xff1a;top -Hp PID通过print命令将线程PID转为16进制&#xff0c;根据该16进制值去打印的堆栈日志内查询&#xff0c;查看该线程所驻留…

Plecs电力电子仿真专业教程-第一季

Plecs电力电子仿真专业教程-第一季 第一章 Plecs是什么&#xff1f; 第一节 Plecs简介 Plecs是瑞士Plexim GmbH公司开发的系统级电力电子仿真软件PLECS。PLECS是一个用于电路和控制结合的多功能仿真软件&#xff0c;尤其适用于电力电子和传动系统。不管您是工业领域中的开发…

Lua 面向对象(详解)

Lua 面向对象&#xff08;详解&#xff09; 参考文章&#xff1a; https://blog.csdn.net/linxinfa/article/details/103254828 https://zhuanlan.zhihu.com/p/115159195 https://blog.codingnow.com/cloud/LuaOO https://blog.codingnow.com/2006/06/oo_lua.html Lua的面向对象…

Homekit智能家居DIY-智能插座

WiFi智能插座对于新手接触智能家居产品更加友好&#xff0c;不需要额外购买网关设备 很多智能小配件也给我们得生活带来极大的便捷&#xff0c;智能插座就是其中之一&#xff0c;比如外出忘记关空调&#xff0c;可以拿起手机远程关闭。 简单说就是&#xff1a;插座可以连接wi…

不再一个个试错,这众多的flex属性

流式布局 本篇我们将从流式布局的四大方面入手&#xff0c;旨在认识、了解、以至于掌握其特性及功能。 为什么要用&#xff1f; 在我们抛弃标准流、定位流以及浮动流之后&#xff0c;取而代之的是flex流式布局。以一种更加优雅的方式实现元素布局。 轴的定义 在开始说它的特…

C语言#if、##ifdef、#ifndef的用法详解

假如现在要开发一个C语言程序&#xff0c;让它输出红色的文字&#xff0c;并且要求跨平台&#xff0c;在 Windows 和 Linux 下都能运行&#xff0c;怎么办呢&#xff1f;这个程序的难点在于&#xff0c;不同平台下控制文字颜色的代码不一样&#xff0c;我们必须要能够识别出不同…

2023最新版easyrecovery数据恢复软件免费版测评

大家好&#xff0c;关于easyrecovery数据恢复软件免费版很多朋友都还不太明白&#xff0c;今天小编就来为大家分享关于easyrecovery数据恢复软件免费版下载使用的知识&#xff0c;希望对各位有所帮助&#xff01; EasyRecovery其实是目前为止我用的最喜欢的一款数据恢复软件&a…

C++string的模拟实现(上篇)

目录 一.命名空间的封装与交换函数模板 1.命名空间的封装与类的定义 2.交换函数模板 二.string类的四个重要默认成员函数 1.构造函数的类外定义&#xff1a; 2.析构函数在类外的定义 3.拷贝构造函数在类外的定义 4.赋值运算符重载在类外的定义 5.关于两个string对象…

在线 OJ 项目(一) · 项目介绍 · 进程与线程 · 实现编译运行模块

一、项目介绍二、导入依赖、创建基本项目结构导入依赖创建基本项目结构三、进程、线程的基础知识回顾四、封装操作进程的工具类五、实现 “编译运行” 模块 Task 类六、封装读写文件的方法修改 JDK 版本七、Task 类的实现八、整理一下项目列表一、项目介绍 项目实现一个在线 O…

煤矿AI智能视频分析识别系统 opencv

煤矿AI智能视频分析识别系统通过opencvpython 深度学习网络模型&#xff0c;对皮带跑偏、撕裂、堆煤、异物、非法运人、有煤无煤状态等异常情况&#xff0c;以及人员工服穿戴、反光衣、安全帽、睡岗离岗、打电话、抽烟等行为进行自动抓拍存档。OpenCV基于C实现&#xff0c;同时…

【正点原子FPGA连载】第二十八章Linux并发与竞争 摘自【正点原子】DFZU2EG_4EV MPSoC之嵌入式Linux开发指南

1&#xff09;实验平台&#xff1a;正点原子MPSoC开发板 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id692450874670 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html 第二十八章Linux…