开源大模型和闭源大模型,打法有何区别?

news2024/11/19 20:36:46

现阶段,各个公司都有自己的大模型产品,有的甚至不止一个。除了小部分开源外,大部分都选择了闭源。那么,头部开源模型厂商选择开源是出于怎样的初衷和考虑?未来大模型将如何发展?我们来看看本文的分享。

img

在对人工智能发展史的观察中,我们发现了AIGC以及它背后的大语言模型在近年高速发展的诸多偶然与必然(可回顾历史文章《关于AIGC崛起与行业发展,我有几点小观察…》

但近两年,大批大语言模型应用的涌现以及“百模大战”的兴起,却与“模型开源”这个动作密不可分。

除了开放性,现阶段的开源和闭源大模型在盈利模式、商业打法、发展策略等方面有何区别?头部开源模型厂商选择开源又是出于怎样的初衷和考虑?未来开源和闭源大模型将如何发展?下文揭晓。

一、开源和闭源大模型的差异化打法

在大众的认知中,开源软件往往指向完整共享源代码,任何人都能使用、检查、修改和分发其源代码的产品。

在计算机科学与技术发展进程中,Linux(操作系统)、Python、JavaScript(编程语言和框架)、MySQL(数据库)、Transformer(深度学习框架)等产品的开源都显得意义非凡。

开源大模型虽属开源阵营中的一员,但现阶段大多数开源的大模型并不像开源软件那样共享完整的源代码、数据集、训练过程等细节,更多属于权重方面的有限开源。

这里面有大模型开发的数据量级、训练复杂度等方面的原因。因为这层缘故,大多数开源模型更多依靠开源方来推动产品研发和迭代,社区贡献度有限。

img产品经理如何做好B端数字化?各行各业都搭上了数字化转型的顺风车,实现了行业的迅速发展。由于B端产品是为企业所提供服务的产品,那么,企业应该如何乘上数字化的顺风车呢?查看详情 >

但即便如此,它让大批开发者能在较低使用成本的基础上,根据自身实际需求进行灵活调整,并解锁更多商业场景和收益,也足以极大刺激整个产业的发展与繁荣。

闭源大模型和大多数闭源软件差异不大,通常指不对外分享源代码,仅所有者能合法访问、修改和分发,经封装后对外进行商业化变现的大模型产品。用户一般只能在付费后按既定方式使用。

区别于开源产品经常采用的“开源方主导+社区共建”的开发模式,闭源大模型高度依赖开发方的自主研发和长线运营,主要通过知识产权的价值货币化快速获取收益。

因为闭源大模型较之开源大模型存在更高的使用门槛,开发方会倾向于将大模型封装成各种标准化的产品,方便各类开发商在此基础上创建应用,并按实际消耗的tokens量、专有许可费等收费。

为了丰富业务线,目前主流的闭源大模型厂商也有基于底层模型推出AI应用,收取相应的产品订阅、调用、定制化等费用,以扩大整体营收。

两者迥异的开发形态和商业模式,决定了开源大模型前期更多通过免费/低价获客和生态合作,壮大基本盘,实现对关联业务的加持或业务场景及客源的拓展,服务于未来的财务增长。

而闭源大模型则更多采用“模型即服务”和应用拓展,直接进行商业变现,服务于当下的业绩增长。

当两者结合,共同推动了大语言模型的发展,加速着通用人工智能时代的来临。

img

二、主流玩家开源大模型的几点思考

就在最近,业内对开源和闭源大模型的讨论声不绝于耳。

孰是孰非这里不论,不过个人比较认同“我们都是受益于开源成长起来的个人和公司”这句话(摘自360创始人周鸿祎的公开发言)。

而且,在整理媒体对当下主流开源大模型掌舵人的采访时,我们发现:各家选择开源自家大模型产品,背后的商业考虑与决策依据其实挺耐人寻味。总结起来,主要包含以下几点:

1)保障技术安全与良性发展。

比如包括Meta CEO扎克伯格、Mistral创始人Arthur Mensch等在内的头部开源大模型厂商leader都有提到:模型的开源会是保障大模型技术安全,解决安全漏洞的有效措施。

而且伴随用户使用的增加,能更好地集思广益,改善模型适用性与标准性,实现良性发展。这点与以往的开源软件宗旨算是一脉相承。

2)实现产业赋能。

鉴于当前基于全栈国产化基础软硬件的平台不多,已开源的多模态本土大模型产品也少,以中国科学院自动化研究所为代表的“国家队”选择开源自研的紫东太初大模型,则更多是想通过“大模型+小数据”的形式,推动大模型对产业带来的赋能。

3)促成生态合作共赢。

作为开源大模型赛道的代表性厂商,Meta坚持开源Llama系列大模型,则很大程度上源于对未来发展的考虑。

在公开采访中,Meta CEO扎克伯格曾表示:开源对Meta AI的未来发展有利。对于整个科技领域来说,大模型的开源也显得意义深刻,能创造更多赢家。

国内方面,以智谱为代表的本土大模型厂商,通过开源ChatGLM-6B,在加速全球下载量的同时,催生了600+优秀大模型应用开源项目,此举进一步推动了产业融合和AI生态建设。

4)为商业化做准备。

虽然开源意味着很难直接大规模商业变现,但作为获客或打开知名度的手段,却效果斐然。

比如2023年成立的Mistral AI ,因发布Mistral 7B、Mistral 8X7B两大开源模型一举成名,之后再推商业化模型,已能在业内快速打开局面,近期官宣获得6.4亿美元B轮融资。

而Llama系列的开源让Meta保持在AI领域的独特优势,反哺社交、广告等业务的同时,也打开了和云服务商、AI硬件平台等合作的另一种可能。

除此之外,出于提升行业地位、扩大商业机会等考虑,也推动着不少大模型开发商选择了开源,以争取在商业生态中的竞争优势或长远发展。

三、未来开源和闭源大模型将如何共处?

目前,有人认为开源大模型和闭源大模型处在对立面,未来必将像零和博弈一般,你输我赢,此消彼长。

不过在个人看来,两者的关系未来很可能像开源软件与闭源软件一样,长期共存,各自发展。

在这其中,开源产品能达到闭源产品很难企及的用户覆盖面与创新自由度,而闭源产品能更快、直接转化为商业利益,进一步提升产品迭代速度和服务质量。

两者就像Linux与Windows,Android与iOS,虽然有竞争,但互为补充,各自在擅长的领域开疆拓土。

只是在入局者越来越多、产品越来越卷的当下,未来市场难免会经历洗牌,只保留少数头部、更具有竞争优势的选手。

这也是眼下国内外大模型厂商热心于竞争生态位或出于商业化考虑,反复切换开源和闭源赛道,或丰富业务线以保持自身优势的一大原因。

比如谷歌在推出闭源大模型Gemini Ultra的同时,发布了Gemma 2B 和7B两款开源模型产品。Mistral在推出Mistral 7B、Mistral 8X7B两大开源模型后一炮而红,新推出的旗舰版大模型Large 则为闭源产品。

出于成本压力和商业化考虑,目前开源大模型厂商和闭源大模型厂商的界限正逐渐模糊。

不过抛开这些,就整个行业来说,开源和闭源大模型的百花齐放,推动了AI上层应用生态乃至整个行业的繁荣,也为人们以较低门槛使用人工智能产品带来了便利。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

资源分享

图片

大模型AGI学习包

图片

图片

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

图片

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩

图片

3.LLM

大家最喜欢也是最关心的LLM(大语言模型)

图片

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1896303.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Hi3861 OpenHarmony嵌入式应用入门--SNTP

sntp(Simple Network Time Protocol)是一种网络时间协议,它是NTP(Network Time Protocol)的一个简化版本。 本项目是从LwIP中抽取的SNTP代码; Hi3861 SDK中已经包含了一份预编译的lwip,但没有…

基于布雷格曼偏差校正技术的全变分一维时间序列信号降噪方法(MATLAB R2018A)

信号降噪是信号处理的重要步骤之一,目的是提高所获得信号数据的质量,以达到更高的定性和定量分析精度。信号降噪能提升信号处理其他环节的性能和人们对信息识别的准确率,给信号处理工作提供更可靠的保证。信号降噪的难点是降低噪声的同时也会…

如何压缩视频大小,怎么压缩视频

随着科技的进步,我们拍摄的视频质量越来越高。然而,视频带来的一个问题是文件体积巨大,这不仅占用大量存储空间,而且在传输和分享时也造成了不小的困扰。别担心,本文将为你详细介绍几种实用的视频压缩方法,…

xmind2testcase工具将测试用例从Xmind转为CSV导入禅道

使用xmind编写测试用例,使用xmind2testcase工具将测试用例从Xmind转为CSV导入禅道,便于管理。 1.工具准备 第一步:安装python 第二步:安装xmind2testcase工具 运行-cmd-打开命令提示符弹窗,输入安装命令 安装命令&…

粉丝问:教育机构首页UI,安排

教育机构的首页UI应该展现以下内容: 机构简介:在首页上展示教育机构的简介和核心价值观,包括机构的使命、愿景和教育理念。这有助于让访问者了解机构的背景和宗旨。课程和项目:展示机构提供的课程和项目,包括学科课程…

AGI|Transformer自注意力机制超全扫盲攻略,建议收藏!

一、前言 2017年,谷歌团队推出一篇神经网络的论文,首次提出将“自注意力”机制引入深度学习中,这一机制可以根据输入数据各部分重要性的不同而分配不同的权重。当ChatGPT震惊世人时,Transformer也随之进入大众视野。一夜之间&…

PMP--知识卡片--波士顿矩阵

文章目录 记忆黑话概念作用图示 记忆 一说到波士顿就联想到波士顿龙虾,所以波士顿矩阵跟动物有关,狗,牛。 黑话 你公司的现金牛业务,正在逐渐变成瘦狗,应尽快采取收割策略;问题业务的储备太少&#xff0…

测量和检测二合一的劳易测解决方案

劳易测ODT3CL系列是一款基于TOF原理的具有测量功能的传感器。它具有很好的检测性能,能够非常可靠的检测亮色、深色以及高反光的物体。ODT 3CL系列的检测距离可达2000毫米,在量程范围内对目标物体的颜色检测不敏感,检测距离稳定输出。 针对工业…

浅析基于量子成像的下一代甚高灵敏度图像传感器技术

高灵敏度探测成像是空间遥感应用中的一个重要技术领域,如全天时对地观测、空间暗弱目标跟踪识别等应用,对于甚高灵敏度图像传感器的需求日益强烈。随着固态图像传感器技术水平的不断提高,尤其背照式及埋沟道等工艺的突破,使得固态…

相机光学(二十四)——CRA角度

CRA角度 0.参考资料1.什么是CRA角度2.为什么 CRA 会导致luma shading3.为什么 CRA 会导致color shading4.CRA相差过大的具体表现5.CRA Matching6.怎样选择sensor的CRA 0.参考资料 1.芯片CRA角度与镜头的匹配关系(一)   2.芯片CRA角度与镜头选型的匹配关…

谷粒商城学习-07-虚拟机网络设置

文章目录 一,找到配置文件Vagrantfile二,查询虚拟机网卡地址1,查看虚拟机网络配置2,查看宿主机网络配置 三,修改配置文件下的IP配置四,重新启动虚拟机即可生效五,Vagrantfile 的作用1&#xff0…

护眼落地灯哪个牌子好?盘点五款必入不踩雷的护眼大路灯

护眼落地灯哪个牌子好?在这个快节奏的时代,护眼落地灯已经从一种高端选择转变为日常用眼生活中的必须品。不论是提升普通照明,还是针对孩子学习是改善光线质量环境,一款优秀的护眼落地灯都能成为我们生活中的照明神器。怎么选择一…

QT+OpenCV在Android上实现人脸实时检测与目标检测

一、功能介绍 在当今的移动应用领域,随着技术的飞速发展和智能设备的普及,将先进的计算机视觉技术集成到移动平台,特别是Android系统中,已成为提升用户体验、拓展应用功能的关键。其中,目标检测与人脸识别作为计算机视…

固相提取铕和铀

固相萃取(Solid Phase Extraction,SPE)是一种常用的化学分离技术,它利用固体吸附剂(固定相)与样品中的目标化合物(流动相)之间的相互作用力,将目标化合物从样品中分离出来…

【数据结构】(C语言):堆(二叉树的应用)

堆: 此处堆为二叉树的应用,不是计算机中用于管理动态内存的堆。形状是完全二叉树。堆分两种:最大堆,最小堆。最大堆:每个节点比子树所有节点的数值都大,根节点为最大值。最小堆:每个节点比子树…

推动高效能:东芝TB67H301FTG全桥直流电机驱动IC

在如今高度自动化的时代,电子产品的性能和效率成为了工程师们关注的焦点。东芝的TB67H301FTG全桥直流电机驱动IC应运而生,以其卓越的技术和可靠性,成为众多应用的理想选择。无论是在机器人、家用电器、工业自动化,还是在其他需要精…

面试篇-系统设计题总结

这里记录一些有趣的系统设计类的题目,一般大家比较喜欢出的设计类面试题目会和高可用系统相关比如秒杀和抢红包等。欢迎大家在评论中评论自己遇到的题目,本篇文章会持续更新。 1、设计一个抢红包系统 抢红包系统其实也是秒杀类中的一个场景&#xff0…

【Linux系统编程】深入剖析:四大IO模型机制与应用(阻塞、非阻塞、多路复用、信号驱动IO 全解读)

目录 概述: 1. 阻塞IO (Blocking IO) 2. 非阻塞IO (Non-blocking IO) 3. IO多路复用 (I/O Multiplexing) 4. 信号驱动IO (Signal-driven IO) 阻塞式IO 非阻塞式IO 信号驱动IO(Signal-driven IO) 信号IO实例: IO多路复用…

后端之路——最规范、便捷的spring boot工程配置

一、参数配置化 上一篇我们学了阿里云OSS的使用,那么我们为了方便使用OSS来上传文件,就创建了一个【util】类,里面有一个【AliOSSUtils】类,虽然本人觉得没啥不方便的,但是黑马视频又说这样还是存在不便维护和管理问题…

Java支付宝沙箱支付环境配置及简单测试

Java支付宝沙箱环境配置(测试) 1. 沙箱配置环境 沙箱应用 - 开放平台 (alipay.com) 2. 需要用到的基本信息 3. Pom文件添加依赖 <!--支付宝依赖 --><dependency><groupId>com.alipay.sdk</groupId><artifactId>alipay-easysdk</artifactId…