概率论与数理统计_下_科学出版社

news2025/1/15 20:36:39

contents

    • 前言
    • 第5章 大数定律与中心极限定理
      • 独立同分布中心极限定理
    • 第6章 数理统计的基本概念
      • 6.1 总体与样本
      • 6.2 经验分布与频率直方图
      • 6.3 统计量
      • 6.4 正态总体抽样分布定理
        • 6.4.1 卡方分布、t 分布、F 分布
        • 6.4.2 正态总体抽样分布基本定理
    • 第7章 参数估计
      • 7.1 点估计
        • 7.1.1 矩估计法
        • 7.1.2 极大似然估计法
      • 7.2 估计量的评价标准
        • 7.2.1 无偏性
        • 7.2.2 有效性
        • 7.2.3 一致性
      • 7.3 区间估计
        • 7.3.1 基本概念
        • 7.3.2 区间估计常用方法之主元法
        • 7.3.3 正态总体的区间估计
    • 第8章 假设检验
      • 8.1 假设检验的基本概念
      • 8.2 单个正态总体均值的假设检验
      • 8.3 单个正态总体方差的假设检验

前言

更好的阅读体验:https://blog.dwj601.cn/GPA/4th-term/ProbAndStat/

笔记范围:五至八章。一至四章请跳转:https://blog.csdn.net/qq_73408594/article/details/140190525

教材情况:

课程名称选用教材版次作者出版社ISBN号
概率论与数理统计Ⅰ概率论与数理统计第一版刘国祥王晓谦 等主编科学出版社978-7-03-038317-4

学习资源:

  • 📺 视频资源:《概率论与数理统计》教学视频全集(宋浩)
  • 📖 教材答案:https://pan.baidu.com/s/1yeC0rxatHaLeNHQaW85Kpw?pwd=448w

第5章 大数定律与中心极限定理

{% note light %}

本章只需要知道一个独立同分布中心极限定理即可,至于棣莫弗-拉普拉斯中心极限定理其实就是前者的 { X i } i = 1 ∞ \{X_i\}_{i=1}^{\infty} {Xi}i=1 服从伯努利 n n n 重分布罢了。

{% endnote %}

独立同分布中心极限定理

定义: { X i } i = 1 ∞ \{X_i\}_{i=1}^{\infty} {Xi}i=1 独立同分布且非零方差,其中 E X i = μ , D X i = σ 2 EX_i=\mu,DX_i=\sigma^2 EXi=μ,DXi=σ2,则有:
∑ i = 1 n X i ∼ N ( ∑ i = 1 n ( E X i ) , ∑ i = 1 n ( D X i ) ) ∼ N ( n μ , n σ 2 ) \begin{aligned} \sum_{i=1}^n X_i &\sim N(\sum_{i=1}^n(EX_i),\sum_{i=1}^n(DX_i)) \\ &\sim N(n\mu,n\sigma^2) \end{aligned} i=1nXiN(i=1n(EXi),i=1n(DXi))N(nμ,nσ2)
解释:其实就是对于独立同分布的随机事件 X i X_i Xi,在事件数 n n n 足够大时,就近似为正态分布(术语叫做依分布)。这样就可以很方便利用正态分布的性质计算当前事件的概率。至于棣莫弗-拉普拉斯中心极限定理就是上述 μ = p , σ 2 = p ( 1 − p ) \mu=p,\sigma^2=p(1-p) μ=p,σ2=p(1p) 的特殊情况罢了

第6章 数理统计的基本概念

{% note light %}

开始统计学之旅。

{% endnote %}

6.1 总体与样本

类比 ML:数据集=总体,样本=样本。

我们只研究一种样本:简单随机样本 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)。符合下列两种特点:

  1. ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 相互独立
  2. ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 同分布

同样的,我们研究总体 X X X 的分布与概率密度,一般概率密度会直接给,需要我们在此基础之上研究所有样本的联合密度:

  • 分布:由于样本相互独立,故:
    F ( x 1 , x 2 , . . . , x n ) = F ( x 1 ) F ( x 2 ) ⋯ F ( x n ) F(x_1,x_2,...,x_n)=F(x_1)F(x_2) \cdots F(x_n) F(x1,x2,...,xn)=F(x1)F(x2)F(xn)

  • 联合密度:同样由于样本相互独立,故:
    p ( x 1 , x 2 , . . . , x n ) = p ( x 1 ) p ( x 2 ) ⋯ p ( x n ) p(x_1,x_2,...,x_n)=p(x_1)p(x_2) \cdots p(x_n) p(x1,x2,...,xn)=p(x1)p(x2)p(xn)

6.2 经验分布与频率直方图

经验分布函数是利用样本得到的。也是给区间然后统计样本频度进而计算频率,只不过区间长度不是固定的。

频率直方图就是选定固定的区间长度,然后统计频度进而计算频率作图。

6.3 统计量

统计量定义:关于样本不含未知数的表达式。

常见统计量:假设 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 为来自总体 X X X 的简单随机样本

一、样本均值和样本方差

  • 样本均值: X ‾ = 1 n ∑ i = 1 n X i \displaystyle \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i X=n1i=1nXi

  • 样本方差: S 0 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n ∑ i = 1 n X i 2 − X ‾ 2 \displaystyle S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n}\sum_{i=1}^n X_i^2 - \overline{X}^2 S02=n1i=1n(XiX)2=n1i=1nXi2X2

  • 样本标准差: S 0 = S 0 2 \displaystyle S_0 = \sqrt{S_0^2} S0=S02

  • 修正样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 \displaystyle S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 S2=n11i=1n(XiX)2

  • 修正样本标准差: S = S 2 \displaystyle S = \sqrt{S^2} S=S2
    {% fold light @推导 %}

    设总体 X X X 的数学期望和方差分别为 μ \mu μ σ 2 \sigma^2 σ2 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn) 是简单随机样本,则:

    样本均值的数学期望与总体的数学期望相等

    即:样本均值的数学期望 = = = 总体的数学期望

    样本方差的数学期望与总体的数学期望 不相等

    即:样本方差的数学期望 ≠ \ne = 总体的数学期望

    修正样本方差推导

    上图即:修正样本方差推导

    {% endfold %}

  • 样本 k k k 阶原点矩: A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ \displaystyle A_k = \frac{1}{n} \sum_{i=1}^n X_i^k,\quad k=1,2,\cdots Ak=n1i=1nXik,k=1,2,

  • 样本 k k k 阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 2 , 3 , ⋯ \displaystyle B_k = \frac{1}{n} \sum_{i=1}^n (X_i-\overline{X})^k,\quad k=2,3,\cdots Bk=n1i=1n(XiX)k,k=2,3,

二、次序统计量

  • 序列最小值
  • 序列最大值
  • 极差 = 序列最大值 - 序列最小值

6.4 正态总体抽样分布定理

{% note light %}

时刻牢记一句话:构造性定义!

{% endnote %}

6.4.1 卡方分布、t 分布、F 分布

分位数

  • 我们定义实数 λ α \lambda_\alpha λα 为随机变量 X X X 的上侧 α \alpha α 分位数(点)当且仅当 P ( X > λ α ) = α P(X > \lambda_\alpha) = \alpha P(X>λα)=α
  • 我们定义实数 λ 1 − β \lambda_{1-\beta} λ1β 为随机变量 X X X 的下侧 β \beta β 分位数(点)当且仅当 P ( X < λ 1 − β ) = β P(X < \lambda_{1-\beta})=\beta P(X<λ1β)=β

χ 2 \chi^2 χ2 分布

{% fold light @密度函数图像 %}

密度函数图像

{% endfold %}

定义:

  • 对于 n n n 个独立同分布的标准正态随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn,若 Y = X 1 2 + X 2 2 + ⋯ + X n 2 Y = X_1^2 + X_2^2 + \cdots + X_n^2 Y=X12+X22++Xn2
  • Y Y Y 服从自由度为 n n n χ 2 \chi^2 χ2 分布,记作: Y ∼ χ 2 ( n ) Y \sim \chi^2(n) Yχ2(n)

性质:

  • 可加性:若 Y 1 ∼ χ 2 ( n 1 ) , Y 2 ∼ χ 2 ( n 2 ) Y_1 \sim \chi^2(n_1), Y_2 \sim \chi^2(n_2) Y1χ2(n1),Y2χ2(n2) Y 1 , Y 2 Y_1,Y_2 Y1,Y2 相互独立,则 Y 1 + Y 2 ∼ χ 2 ( n 1 + n 2 ) Y_1+Y_2 \sim \chi^2(n_1+n_2) Y1+Y2χ2(n1+n2)

  • 统计性:对于 Y ∼ χ 2 ( n ) Y \sim \chi^2(n) Yχ2(n),有 E Y = n , D Y = 2 n EY = n, DY = 2n EY=n,DY=2n

    {% fold light @推导 %}
    EY 的推导利用: E X 2 = D X − ( E X ) 2 EX^2 = DX - (EX)^2 EX2=DX(EX)2

    EY 的推导

    DY 的推导利用:方差计算公式、随机变量函数的数学期望进行计算

    DY 的推导

    {% endfold %}

t t t 分布

{% fold light @密度函数图像 %}

密度函数图像

{% endfold %}

定义:

  • 若随机变量 X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X \sim N(0, 1),Y \sim \chi^2 (n) XN(0,1),Yχ2(n) X , Y X,Y X,Y 相互独立
  • 则称随机变量 T = X Y / n T = \displaystyle \frac{X}{\sqrt{Y/n}} T=Y/n X 为服从自由度为 n n n t t t 分布,记作 T ∼ t ( n ) T \sim t(n) Tt(n)

性质:

  • 密度函数是偶函数,具备对称性

F F F 分布

{% fold light @密度函数图像 %}

密度函数图像

{% endfold %}

定义:

  • 若随机变量 X ∼ χ 2 ( m ) , Y ∼ χ 2 ( n ) X \sim \chi^2(m), Y \sim \chi^2(n) Xχ2(m),Yχ2(n) 且相互独立
  • 则称随机变量 G = X / m Y / n G=\displaystyle \frac{X/m}{Y/n} G=Y/nX/m 服从自由度为 ( m , n ) (m,n) (m,n) F F F 分布,记作 G ∼ F ( m , n ) G \sim F(m, n) GF(m,n)

性质:

  • 倒数自由度转换: 1 G ∼ F ( n , m ) \displaystyle \frac{1}{G} \sim F(n, m) G1F(n,m)
  • 三变性质: F 1 − α ( m , n ) = [ F α ( n , m ) ] − 1 \displaystyle F_{1-\alpha}(m, n) = \left [F_\alpha (n, m)\right]^{-1} F1α(m,n)=[Fα(n,m)]1
6.4.2 正态总体抽样分布基本定理

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的简单随机样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和修正样本方差。则有:

定理:

  • X ‾ ∼ N ( μ , σ 2 n ) \displaystyle \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) XN(μ,nσ2)
  • ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \displaystyle \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) σ2(n1)S2χ2(n1)
  • X ‾ \overline{X} X S 2 S^2 S2 相互独立

推论:

  • n ( X ‾ − μ ) S ∼ t ( n − 1 ) \displaystyle \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t(n-1) Sn (Xμ)t(n1)

第7章 参数估计

{% note light %}

有些时候我们知道数据的分布类型,但是不清楚表达式中的某些参数,这就需要我们利用「已有的样本」对分布表达式中的参数进行估计。本章我们将从点估计、估计评价、区间估计三部分出发进行介绍。

{% endnote %}

7.1 点估计

{% note light %}

所谓点估计策略,就是直接给出参数的一个估计值。本目我们介绍点估计策略中的两个方法:矩估计法、极大似然估计法。

{% endnote %}

7.1.1 矩估计法

其实就一句话:我们用样本的原点矩 A k A_k Ak 来代替总体 E ( X k ) E(X^k) E(Xk) k k k 个未知参数就需要用到 k k k 个原点矩:
E ( X k ) = A k = 1 n ∑ i = 1 n X i k E(X^k) = A_k = \frac{1}{n}\sum_{i=1}^nX_i^k E(Xk)=Ak=n1i=1nXik

7.1.2 极大似然估计法

基本原理是:在当前样本数据的局面下,我们希望找到合适的参数使得当前的样本分布情况发生的概率最大。由于各样本相互独立,因此我们可以用连乘的概率公式来计算当前局面的概率值:
L ( θ ; x 1 , x 2 , ⋯   , x n ) L(\theta;x_1,x_2,\cdots,x_n) L(θ;x1,x2,,xn)
上述 L ( θ ; x 1 , x 2 , ⋯   , x n ) L(\theta;x_1,x_2,\cdots,x_n) L(θ;x1,x2,,xn) 即似然函数,目标就是选择适当的参数 θ \theta θ 来最大化似然函数。无论是离散性还是连续型,都可以采用下面的方式来计算极大似然估计:

  1. 写出似然函数 L ( θ ) L(\theta) L(θ)
  2. 将上述似然函数取对数
  3. 求对数似然函数关于所有未知参数的偏导并计算极值点
  4. 解出参数关于样本统计量的表达式

离散型随机变量的似然函数表达式
L ( θ ) = ∏ i = 1 n p ( x i ; θ ) = ∏ i = 1 n P ( X i = x i ) L(\theta) = \prod_{i=1}^n p(x_i;\theta) = \prod_{i=1}^n P(X_i = x_i) L(θ)=i=1np(xi;θ)=i=1nP(Xi=xi)
连续型随机变量的似然函数表达式
L ( θ ) = ∏ i = 1 n p ( x i ; θ ) L(\theta) = \prod_{i=1}^n p(x_i;\theta) L(θ)=i=1np(xi;θ)
可以看出极大似然估计本质上就是一个多元函数求极值的问题。特别地,当我们没法得到参数关于样本统计量的表达式 L ( θ ) L(\theta) L(θ) 时,可以直接从定义域、原函数恒增或恒减等角度出发求解这个多元函数的极值。

7.2 估计量的评价标准

{% note light %}

如何衡量不同的点估计方法好坏?我们引入三种点估计量的评价指标:无偏性、有效性、一致性。其中一致性一笔带过,不做详细讨论。补充一点,参数的估计量 θ \theta θ 是关于样本的统计量,因此可以对其进行求期望、方差等操作。

{% endnote %}

7.2.1 无偏性

顾名思义,就是希望估计出来的参数量尽可能不偏离真实值。我们定义满足下式的估计量 θ ^ \hat \theta θ^ 为真实参数的无偏估计:
E θ ^ = θ E\hat \theta =\theta Eθ^=θ

7.2.2 有效性

有效性是基于比较的定义方法。对于两个无偏估计 θ ^ 1 , θ ^ 2 \hat\theta_1,\hat\theta_2 θ^1,θ^2,谁的方差越小谁就越有效。即若 D ( θ ^ 1 ) , D ( θ ^ 2 ) D(\hat\theta_1),D(\hat\theta_2) D(θ^1),D(θ^2) 满足下式,则称 θ ^ 1 \hat\theta_1 θ^1 更有效
D ( θ ^ 1 ) < D ( θ ^ 2 ) D(\hat\theta_1) < D(\hat\theta_2) D(θ^1)<D(θ^2)

7.2.3 一致性

即当样本容量 n 趋近于无穷时,参数的估计值也能趋近于真实值,则称该估计量 θ ^ \hat\theta θ^ θ \theta θ 的一致估计量

7.3 区间估计

{% note light %}

由于点估计只能进行比较,无法对单一估计进行性能度量。因此引入「主元法」的概念与「区间估计」策略

{% endnote %}

7.3.1 基本概念

可靠程度:参数估计区间越长,可靠程度越高

精确程度:参数估计区间越短,可靠程度越高

7.3.2 区间估计常用方法之主元法

主元法的核心逻辑就一个:在已知数据总体分布的情况下,构造一个关于样本 X X X 和待估参数 θ \theta θ 的函数 Z ( X , θ ) Z(X,\theta) Z(X,θ),然后利用置信度和总体分布函数,通过查表得到 Z ( X , θ ) Z(X,\theta) Z(X,θ) 的取值范围,最后通过移项变形得到待估参数的区间,也就是估计区间。

7.3.3 正态总体的区间估计

我们只需要掌握「一个总体服从正态分布」的情况。这种情况下的区间估计分为三种,其中估计均值 μ \mu μ 有 2 种,估计方差 σ 2 \sigma^2 σ2 有 1 种。估计的逻辑我总结为了以下三步:

  1. 构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
  2. 利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围
  3. 对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围

为了提升区间估计的可信度,我们希望上述第 2 步计算出来的关于主元的取值范围尽可能准确。我们不加证明的给出以下结论:取主元的取值范围为 主元服从的分布的上下 α 2 \frac{\alpha}{2} 2α 分位数之间

(一) 求 μ \mu μ 的置信区间, σ 2 \sigma^2 σ2 已知

构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) Z=σ/n XμN(0,1)
利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围:
P ( ∣ Z ∣ ≤ λ ) = 1 − α ↓ Z ∈ [ − λ , λ ] = [ − u α 2 , u α 2 ] \begin{aligned} P(|Z| \le \lambda) &= 1-\alpha \\ &\downarrow\\ Z \in [-\lambda,\lambda] &= [-u_{\frac{\alpha}{2}},u_\frac{\alpha}{2}] \end{aligned} P(Zλ)Z[λ,λ]=1α=[u2α,u2α]
对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围:
X ‾ − σ n u α 2 ≤ μ ≤ X ‾ + σ n u α 2 \overline{X} - \frac{\sigma}{\sqrt{n}} u_\frac{\alpha}{2} \le \mu \le \overline{X} + \frac{\sigma}{\sqrt{n}} u_\frac{\alpha}{2} Xn σu2αμX+n σu2α
(二) 求 μ \mu μ 的置信区间, σ 2 \sigma^2 σ2 未知

构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
Z = X ‾ − μ S / n ∼ t ( n − 1 ) Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1) Z=S/n Xμt(n1)
利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围:
P ( ∣ Z ∣ ≤ λ ) = 1 − α ↓ Z ∈ [ − λ , λ ] = [ − t α 2 ( n − 1 ) , t α 2 ( n − 1 ) ] \begin{aligned} P(|Z| \le \lambda) &= 1-\alpha \\ &\downarrow\\ Z \in [-\lambda,\lambda] &= [-t_{\frac{\alpha}{2}}(n-1),t_\frac{\alpha}{2}(n-1)] \end{aligned} P(Zλ)Z[λ,λ]=1α=[t2α(n1),t2α(n1)]
对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围:
X ‾ − S n t α 2 ( n − 1 ) ≤ μ ≤ X ‾ + S n t α 2 ( n − 1 ) \overline{X} - \frac{S}{\sqrt{n}} t_\frac{\alpha}{2}(n-1) \le \mu \le \overline{X} + \frac{S}{\sqrt{n}} t_\frac{\alpha}{2}(n-1) Xn St2α(n1)μX+n St2α(n1)
(三) 求 σ 2 \sigma^2 σ2 的置信区间,构造的主元与总体均值无关,因此不需要考虑 μ \mu μ 的情况:

构造主元 Z ( X , θ ) Z(X,\theta) Z(X,θ)
Z = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) Z = \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) Z=σ2(n1)S2χ2(n1)
利用置信度 1 − α 1-\alpha 1α 计算主元 Z Z Z 的取值范围:
P ( λ 1 ≤ Z ≤ λ 2 ) = 1 − α ↓ Z ∈ [ λ 1 , λ 2 ] = [ χ 1 − α 2 2 ( n − 1 ) , χ α 2 2 ( n − 1 ) ] \begin{aligned} P(\lambda_1 \le Z \le \lambda_2) &= 1-\alpha \\ &\downarrow\\ Z \in [\lambda_1,\lambda_2] &= [\chi^2_{1-\frac{\alpha}{2}}(n-1),\chi^2_\frac{\alpha}{2}(n-1)] \end{aligned} P(λ1Zλ2)Z[λ1,λ2]=1α=[χ12α2(n1),χ2α2(n1)]
对主元 Z Z Z 的取值范围移项得到参数 θ \theta θ 的取值范围:
( n − 1 ) S 2 χ α 2 2 ( n − 1 ) ≤ σ 2 ≤ ( n − 1 ) S 2 χ 1 − α 2 2 ( n − 1 ) \frac{(n-1)S^2}{\chi^2_\frac{\alpha}{2}(n-1)} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} χ2α2(n1)(n1)S2σ2χ12α2(n1)(n1)S2

第8章 假设检验

{% note light %}

第 7 章的参数估计是在总体分布已知且未知分布表达式中某些参数的情况下,基于「抽取的少量样本」进行的参数估计。

现在的局面同样,我们已知总体分布和不完整的分布表达式参数。现在需要我们利用抽取的少量样本判断样本所在向量空间是否符合某种性质。本章的「假设检验」策略就是为了解决上述情况而诞生的。我们主要讨论单个正态总体的情况并针对均值和方差两个参数进行假设和检验:

  • 假设均值满足某种趋势,利用已知数据判断假设是否成立
  • 假设方差满足某种趋势,利用已知数据判断假设是否成立

{% endnote %}

8.1 假设检验的基本概念

基本思想:首先做出假设并构造一个关于样本观察值和已知参数的检验统计量,接着计算假设发生的情况下小概率事件发生时该检验统计量的取值范围(拒绝域),最终代入已知样本数据判断计算结果是否在拒绝域内。如果在,则说明在当前假设的情况下小概率事件发生了,对应的假设为假;反之说明假设为真。

为了量化「小概率事件发生」这个指标,我们引入显著性水平 α \alpha α 这一概念。该参数为一个很小的正数,定义为「小概率事件发生」的概率上界。

基于数据的实验导致我们无法避免错误,因此我们定义以下两类错误:

  • 第一类错误:弃真错误。即假设正确,但由于数据采样不合理导致拒绝了真实的假设
  • 第二类错误:存伪错误。即假设错误,同样因为数据的不合理导致接受了错误的假设

8.2 单个正态总体均值的假设检验

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的简单随机样本。后续进行假设判定计算统计量 Z Z Z 的真实值时,若总体均值 μ \mu μ 已知就直接代入,若未知题目也一定会给一个阈值,代这个阈值即可。

当总体方差 σ 2 \sigma^2 σ2 已知时,我们构造样本统计量 Z Z Z 为正态分布:
Z = X ‾ − μ σ / n ∼ N ( 0 , 1 ) Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1) Z=σ/n XμN(0,1)

  • 检验是否则求解双侧 α \alpha α 分位数
  • 检验单边则求解单侧 α \alpha α 分位数

当总体方差 σ 2 \sigma^2 σ2 未知时,我们构造样本统计量 Z Z Z t t t 分布:
Z = X ‾ − μ S / n ∼ t ( n − 1 ) Z = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1) Z=S/n Xμt(n1)
{% note warning %}

注:之所以这样构造是因为当总体 σ \sigma σ 未知时,上一个方法构造的主元已经不再是统计量,我们需要找到能够代替未知参数 σ \sigma σ 的变量,这里就采用其无偏估计「修正样本方差 S 2 S^2 S2」来代替 σ 2 \sigma^2 σ2。也是说直接拿样本的修正方差来代替总体的方差了。

{% endnote %}

  • 检验是否则求解双侧 α \alpha α 分位数
  • 检验单边则求解单侧 α \alpha α 分位数

8.3 单个正态总体方差的假设检验

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 的简单随机样本。后续进行假设判定计算统计量 Z Z Z 的真实值时,若总体方差 σ 2 \sigma^2 σ2 已知就直接代入,若未知题目也一定会给一个阈值,代这个阈值即可。

我们直接构造样本统计量 Z Z Z χ 2 \chi^2 χ2 分布:
Z = ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) Z = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) Z=σ2(n1)S2χ2(n1)

  • 检验是否则求解双侧 α \alpha α 分位数
  • 检验单边则求解单侧 α \alpha α 分位数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1895500.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python库(3):Cerberus库

1 Cerberus简介 Cerberus 是一个Python数据验证库&#xff0c;设计用于验证数据结构的有效性和一致性。它提供了一种简单而强大的方式来定义和应用验证规则&#xff0c;特别适用于处理用户输入的验证、配置文件的检查以及API的参数验证等场景。下面将详细介绍 Cerberus 的特点…

精准畜牧业:多维传感监测及分析动物采食行为

全球畜牧业呈现出一个动态且复杂的挑战。近几十年来&#xff0c;它根据对动物产品需求的演变进行了适应&#xff0c;动物生产系统需要提高其效率和环境可持续性。在不同的畜牧系统中有效行动取决于科学技术的进步&#xff0c;这允许增加照顾动物健康和福祉的数量。精准畜牧业技…

【C++ | 继承】|概念、方式、特性、作用域、6类默认函数

继承 1.继承的概念与定义2.继承的方式2.1继承基本特性2.2继承的作用域2.2.1隐藏赋值兼容 派生类的创建和销毁构造函数拷贝构造赋值重载 1.继承的概念与定义 继承是面向对象编程中的一个重要概念。它的由来可以追溯到软件开发中的模块化设计和代码复用的需求。 在软件开发过程…

山西车间应用LP-LP-SCADA系统的好处有哪些

关键字:LP-SCADA系统, 传感器可视化, 设备可视化, 独立SPC系统, 智能仪表系统,SPC可视化,独立SPC系统 LP-SCADA&#xff08;监控控制与数据采集&#xff09;系统是工业控制系统的一种&#xff0c;主要用于实时监控、控制和管理工业生产过程。 在车间应用LP-SCADA系统&#xf…

【项目日记(四)】搜索引擎-Web模块

❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多项目内容 目录 1.前言2.前端模块2.1页面设计2.2后端交互 3.部署到云服务器4.总结 1.前言 在前面的文…

25届最近5年华北电力大学自动化考研院校分析

华北电力大学&#xff08;北京保定&#xff09; 目录 一、学校学院专业简介 二、考试科目指定教材 三、近5年考研分数情况 四、近5年招生录取情况 五、最新一年分数段图表 六、初试大纲复试大纲 七、学费&奖学金&就业方向 一、学校学院专业简介 二、考试科目指…

论文导读 | knowledge-based VQA

背景介绍 传统的视觉问答&#xff08;Visual Question Answering, VQA&#xff09;基准测试主要集中在简单计数、视觉属性和物体检测等问题上&#xff0c;这些问题不需要超出图像内容的推理或知识。然而&#xff0c;在knowledge-based VQA中&#xff0c;仅靠图像无法回答给定的…

DA-LSTM多输入分类|蜻蜓算法-长短期神经网络|Matlab

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、算法介绍&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matlab平台编译&am…

大疆2025校招内推

需要内推码的请留言哦 期待你的加入

哪个麦克风唱歌效果好,哪个麦克风好,无线麦克风十大排名分享

​在数字化时代的背景下&#xff0c;声音的传播与记录变得日益重要。无论是会议室、教室还是户外场所&#xff0c;无线领夹麦克风凭借其便携性和稳定的连接性能&#xff0c;成为人们沟通表达的首选工具。面对众多选择&#xff0c;我为你精选了几款性能卓越且性价比高的无线领夹…

DVWA sql手注学习(巨详细不含sqlmap)

这篇文章主要记录学习sql注入的过程中遇到的问题已经一点学习感悟&#xff0c;过程图片会比较多&#xff0c;比较基础和详细&#xff0c;不存在看不懂哪一步的过程 文章目录 靶场介绍SQL注入 lowSQL注入 MediumSQL注入 HighSQL注入 Impossible 靶场介绍 DVWA&#xff08;Damn…

巴图自动化Modbus协议转Profinet协议网关模块连智能仪表与PLC通讯

一、现场要求:PLC作为控制器&#xff0c;仪表设备作为执行设备。执行设备可以实时响应PLC传送的指令&#xff0c;并将数据反馈给PLC&#xff0c;从而实现PLC对仪表设备的控制和监控&#xff0c;实现对生产过程的精确控制。 二、解决方案:通过巴图自动化Modbus协议转Profinet协议…

C++ 智能指针内存泄漏问题

shared_ptr相互嵌套导致循环引用 代码示例 #include <iostream> #include <memory> using namespace std;class B;class A { public:std::shared_ptr<B> b_ptr;~A() { std::cout << "A destroyed\n"; } };class B { public:std::shared_pt…

明星代言6个提升企业形象的杀手锏-华媒舍

在当今竞争激烈的商业世界中&#xff0c;企业形象的塑造对于品牌的发展至关重要。而明星代言作为一种常见的营销手段&#xff0c;被广泛使用来提升企业形象和产品销售。本文将介绍明星代言的六个杀手锏&#xff0c;帮助您了解如何通过明星代言来提升企业形象。 1. 拥有广泛的影…

PCB设计时,信号走线要先过ESD/TVS管,这是为什么?

目录 为什么有上面这个问题&#xff1f; 问题的原因——走线电感 走线电感的阻抗 电感的影响 小结 都说接口处的信号要先过ESD/TVS管&#xff0c;然后拉到被保护器件&#xff0c;为什么不这样做效果就不好&#xff1f;那如果受板子实际情况限制&#xff0c;必须这样layout…

专题二:Spring源码编译

目录 下载源码 配置Gradle 配置环境变量 配置setting文件 配置Spring源码 配置文件调整 问题解决 完整配置 gradel.properties build.gradle settiings.gradel 在专题一&#xff1a; Spring生态初探中我们从整体模块对Spring有个整体的印象&#xff0c;现在正式从最…

经典卷积神经网络 LeNet

一、实例图片 #我们传入的是28*28&#xff0c;所以加了padding net nn.Sequential(nn.Conv2d(1, 6, kernel_size5, padding2), nn.Sigmoid(),nn.AvgPool2d(kernel_size2, stride2),nn.Conv2d(6, 16, kernel_size5), nn.Sigmoid(),nn.AvgPool2d(kernel_size2, stride2),nn.Flat…

Android EditText的属性与用法

EditText 是编辑框控件&#xff0c;可以接收用户输入&#xff0c;并在程序中对用户输入进行处理。EditText在App里随处可见&#xff0c;在进行搜索、聊天、拨号等需要输入信息的场合&#xff0c;都可以使用 EditText。 图1 编辑框示意图 EditText 是TextView的子类&#xff0c…

吴恩达深度学习笔记:机器学习策略(2)(ML Strategy (2)) 2.5-2.6

目录 第三门课 结构化机器学习项目&#xff08;Structuring Machine Learning Projects&#xff09;第二周&#xff1a;机器学习策略&#xff08;2&#xff09;(ML Strategy (2))2.5 数据分布不匹配时的偏差与方差的分析&#xff08;Bias and Variance with mismatched data di…

下载安装MySQL

1.软件的下载 打开官网下载mysql-installer-community-8.0.37.0.msi 2.软件的安装 mysql下载完成后&#xff0c;找到下载文件&#xff0c;双击安装 3.配置环境变量 4.自带客户端登录与退出