精准畜牧业:多维传感监测及分析动物采食行为

news2025/1/15 20:34:31

        全球畜牧业呈现出一个动态且复杂的挑战。近几十年来,它根据对动物产品需求的演变进行了适应,动物生产系统需要提高其效率和环境可持续性。在不同的畜牧系统中有效行动取决于科学技术的进步,这允许增加照顾动物健康和福祉的数量。精准畜牧业技术在现代农业中越来越普遍,帮助农民优化畜牧生产,最小化浪费和成本。

        精准畜牧业(Precision Livestock Farming, PLF)在个体水平上监测动物行为和疾病检测。PLF建立在传感器、通信协议、信号处理、计算智能算法和嵌入式处理器之上的,允许开发便携式设备,用于实时监测个体动物,为农业系统提供积极管理支持。

1 研究背景

1.1 反刍动物采食行为的重要性

  • 与营养和健康相关: 采食行为是反刍动物营养和健康的重要指标。咀嚼活动与瘤胃酸中毒的风险和饲料的适宜组成有关,反刍活动则提供有关分娩时刻和亚临床疾病或健康问题的信息。
  • 影响生产效率: 采食行为的长期分析可以区分两种主要活动:反刍和放牧。这些活动占据每天 60-80% 的时间,对评估放牧策略、准确估计每日摄入量和检测疾病、发情和分娩等至关重要。
  • 监测和评估的必要性: 为了优化动物生长和牛奶产量,并提高生产系统的效率和环境可持续性,需要监测和评估反刍动物的采食行为。

1.2 传统监测方法的局限性

  • 传统方法,如视觉观察,耗时且效率低下,难以进行长期监测。
  • 传统方法难以提供关于采食行为的具体细节,例如咀嚼次数、咀嚼速率和饲料类型。

1.3 自动监测技术的优势

  • 自动监测技术可以提供关于动物采食行为的详细数据,包括咀嚼次数、咀嚼速率、饲料类型和反刍活动等。
  • 自动监测技术可以进行长期监测,并用于评估动物采食行为的昼夜模式。
  • 自动监测技术可以帮助农民及时发现健康问题,例如疾病、发情和分娩。

1.4 监测方法的多样性

  • 自动监测技术可以使用多种传感器来监测动物采食行为,包括运动传感器、声音传感器、图像传感器和压力传感器。
  • 每种传感器都有其优点和缺点,例如运动传感器可以提供关于动物运动的详细信息,但可能会受到环境噪声的影响。

2 采食机制

采食行为是一个复杂的过程,涉及多个层次的时间和空间尺度。Bailey 等人 (1996) 提出了一种概念模型,将采食行为分为六个层次:

  • 咬合: 动物接近牧场并利用舌头将草料带到口中。
  • 采食站: 动物在特定的采食地点采食。
  • 斑块: 动物在特定的草场斑块采食。
  • 采食点: 动物在特定的采食地点采食。
  • 牧场或草地: 动物在特定的牧场或草地上采食。
  • 栖息地: 动物在其整个栖息地内的采食行为。

2.1 咀嚼活动的生物学机制

咀嚼活动是采食行为的基础,涉及动物上下颌的闭合和打开。咀嚼活动可以分为三个阶段:

  • 咬合: 动物利用上下颌将草料切割并固定在口中。
  • 咀嚼: 动物利用牙齿将草料磨碎。
  • 吞咽: 动物将咀嚼好的食物吞下。

咀嚼活动与瘤胃功能密切相关。 咀嚼过程中产生的唾液可以帮助缓冲瘤胃 pH 值,减少饲料颗粒大小,并促进瘤胃细菌附着在饲料颗粒上进行微生物发酵。

2.2 咀嚼活动与采食行为的关系

  • 咀嚼活动是采食行为的核心,但采食行为还包括其他活动,例如行走、站立和躺卧。
  • 咀嚼活动与采食行为的关系取决于动物所处的环境和采食策略。 例如,在放牧系统中,动物需要行走和站立来采食,而在舍饲系统中,动物可以直接从饲料槽中采食。

2.3 不同采食行为的特点 (咀嚼、反刍、采食)

2.3.1 咀嚼

  • 咀嚼活动产生声音,这些声音的能量、幅度和持续时间与咀嚼的类型和强度有关。
  • 咀嚼活动与饲料的物理特性(如纤维含量、拉伸强度、水分含量和密度)有关。

2.3.2 反刍

  • 反刍活动也产生声音,但这些声音的能量和幅度较低,因为草料已经破碎并含有额外的水分。
  • 反刍活动由三个阶段组成:反刍、咀嚼和吞咽。

2.3.3 采食

  • 采食活动包括行走、站立和躺卧等行为,这些行为也产生声音,例如行走时产生的脚步声和躺卧时产生的呼吸声。
  • 采食活动与动物的营养需求和采食策略有关。 例如,饥饿的动物可能会采食得更快,而饱腹的动物可能会采食得更慢。

3 基于不同传感器的监测方法

本文将介绍三种主要的监测和分析反刍动物采食行为的方法:基于运动传感器、基于声音传感器和基于图像传感器的方法。

3.1 基于运动传感器

3.1.1 数据采集和管理

  • 运动传感器通常安装在动物的颈部或腿部,例如加速度计、陀螺仪和磁力计。
  • 数据采集通常需要大量的动物和长时间的数据收集,这需要复杂的实验设计和数据分析。

3.1.2 预处理

  • 预处理步骤包括插值缺失值、去除异常值、去除重力加速度和偏差。
  • 预处理的目标是生成更易于分析和识别的特征。

3.1.3 特征提取

  • 特征提取可以从时间域和频域进行,例如计算加速度和角速度的统计特征、能量、零交叉率和平均强度。
  • 特征提取的目标是提取能够区分不同采食行为的特征。

3.1.4 分类

  • 分类器可以基于启发式方法、经典机器学习方法或深度学习方法。
  • 启发式方法使用简单的规则和阈值来区分采食行为。
  • 经典机器学习方法使用统计推断和集成模型来分类采食行为。
  • 深度学习方法使用人工神经网络来学习数据的复杂表示。

3.1.5 验证方法

  • 模型验证可以使用 k 折交叉验证或留一数据验证。
  • 常用的性能指标包括准确率、精确率、召回率和 F1 分数。
  • 对于类别不平衡的数据集,可以使用重采样技术来平衡类别。

3.2 基于声音传感器

3.2.1 数据采集和管理

  • 声音传感器通常安装在动物的额头、角或鼻梁上,例如麦克风。
  • 数据采集需要大量的动物和长时间的数据收集,这需要复杂的实验设计和数据分析。

3.2.2 预处理

  • 预处理步骤包括分割、降噪和滤波。
  • 预处理的目标是提高信号的信噪比并提取更有用的信息。

3.2.3 特征提取

  • 特征提取可以从时间域和频域进行,例如计算梅尔频率倒谱系数 (MFCC) 和时间域特征。
  • 特征提取的目标是提取能够区分不同采食行为的特征。

3.2.4 分类

  • 分类器可以基于启发式方法、经典机器学习方法或深度学习方法。
  • 启发式方法使用简单的规则和阈值来区分采食行为。
  • 经典机器学习方法使用统计推断和集成模型来分类采食行为。
  • 深度学习方法使用人工神经网络来学习数据的复杂表示。

3.2.5 验证方法

  • 模型验证可以使用 k 折交叉验证或留一数据验证。
  • 常用的性能指标包括准确率、识别率、误报率和漏报率。
  • 对于类别不平衡的数据集,可以使用重采样技术来平衡类别。

3.3 基于图像传感器

3.3.1 数据采集和管理

  • 图像传感器通常安装在固定的位置,例如摄像机。
  • 数据采集通常需要大量的图像或视频,这需要复杂的存储和传输。

3.3.2 预处理和特征提取

  • 预处理步骤包括图像增强、去噪和分割。
  • 特征提取可以使用深度学习方法自动提取。

3.3.3 分类

分类器通常使用深度学习方法,例如卷积神经网络 (CNN) 和循环神经网络 (RNN)。

3.3.4 验证方法

  • 模型验证可以使用训练/验证数据集划分。
  • 常用的性能指标包括准确率、精确率、召回率和 F1 分数。
  • 对于类别不平衡的数据集,可以使用重采样技术来平衡类别。

3.4 鼻带压力传感器

可以直接测量动物上下颌的运动,从而识别采食行为。

  • 数据采集和管理: 需要动物佩戴鼻带,并记录压力数据。
  • 预处理和特征提取: 可以使用时间域特征或频域特征。
  • 分类: 可以使用启发式方法或经典机器学习方法。
  • 验证方法: 可以使用训练/验证数据集划分或 k 折交叉验证。

3.5 传感器技术的比较

3.5.1 基于运动传感器

3.5.1.1 优点

  • 便携性: 运动传感器通常可以安装在动物的颈部或腿部,无需侵入动物。
  • 连续性: 运动传感器可以连续监测动物行为,提供长时间的数据。
  • 灵活性: 运动传感器可以放置在多个位置,例如颈部、腿部或耳部,以监测不同的行为。

3.5.1.2 缺点

  • 易受干扰: 运动传感器容易受到环境因素的影响,例如振动、温度变化和动物运动。
  • 需要校准: 运动传感器需要定期校准,以确保数据的准确性。
  • 无法直接测量采食行为: 运动传感器无法直接测量采食行为,需要与其他传感器结合使用。

3.5.2 基于声音传感器

3.5.2.1 优点

  • 提供详细的行为信息: 声音传感器可以提供有关采食行为、饲料类型和采食量的详细信息。
  • 不受环境因素影响: 声音传感器不受环境因素的影响,例如光照、温度和湿度。
  • 易于安装和使用: 声音传感器易于安装和使用,无需侵入动物。

3.5.2.2 缺点

  • 易受噪声干扰: 声音传感器容易受到环境噪声的影响,例如风声、鸟鸣和其他动物的叫声。
  • 需要校准: 声音传感器需要定期校准,以确保数据的准确性。
  • 无法直接测量采食行为: 声音传感器无法直接测量采食行为,需要与其他传感器结合使用。

3.5.3 基于图像传感器

3.5.3.1 优点

  • 非侵入性: 图像传感器无需侵入动物,可以远程监测动物行为。
  • 提供详细的视觉信息: 图像传感器可以提供有关动物采食行为、饲料类型和环境条件的详细信息。
  • 易于安装和使用: 图像传感器易于安装和使用,无需侵入动物。

3.5.3.2 缺点

  • 需要大量存储空间: 图像传感器需要大量的存储空间来存储图像和视频数据。
  • 需要高性能计算资源: 图像传感器需要高性能的计算资源来处理图像和视频数据。
  • 易受环境因素影响: 图像传感器容易受到环境因素的影响,例如光照变化和阴影。

4 挑战及未来发展方向

4.1 数据和实验方法的标准化

  • 数据共享: 缺乏公开可访问的数据集,导致难以比较不同研究的结果,并阻碍了技术的推广。需要建立共享数据平台,促进学术交流和合作。
  • 实验方法: 缺乏标准化的实验参数、协议和性能指标,导致研究结果难以复制和验证。需要制定标准化的实验方法,以促进研究的可比性和可重复性。

4.2 机器学习模型的优化

  • 计算成本: 深度学习模型的计算成本和内存需求较高,限制了其在资源受限设备上的应用。需要开发轻量级模型和高效的算法,以提高模型的性能和效率。
  • 数据需求: 深度学习模型需要大量的训练数据,而标记数据的获取成本较高。需要探索数据增强、迁移学习和半监督学习等方法,以减少对标记数据的需求。

4.3 多模态数据融合

     目前大多数研究只使用单一类型的数据,例如运动数据或声音数据,而忽略了其他类型的数据,例如图像数据。需要开发能够融合多模态数据的算法,以提供更全面的理解。

4.4 边缘智能和人工智能

     需要将机器学习算法部署到边缘设备和智能设备中,以实现实时监测和分析。需要探索边缘智能和人工智能技术,以提高系统的自主性和灵活性。

4.5 分布式智能生态系统

     需要构建分布式智能生态系统,将边缘、雾和云计算层结合起来,以实现高效的数据处理和管理。需要探索分布式智能技术,以提高系统的可扩展性和可靠性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1895497.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++ | 继承】|概念、方式、特性、作用域、6类默认函数

继承 1.继承的概念与定义2.继承的方式2.1继承基本特性2.2继承的作用域2.2.1隐藏赋值兼容 派生类的创建和销毁构造函数拷贝构造赋值重载 1.继承的概念与定义 继承是面向对象编程中的一个重要概念。它的由来可以追溯到软件开发中的模块化设计和代码复用的需求。 在软件开发过程…

山西车间应用LP-LP-SCADA系统的好处有哪些

关键字:LP-SCADA系统, 传感器可视化, 设备可视化, 独立SPC系统, 智能仪表系统,SPC可视化,独立SPC系统 LP-SCADA(监控控制与数据采集)系统是工业控制系统的一种,主要用于实时监控、控制和管理工业生产过程。 在车间应用LP-SCADA系统&#xf…

【项目日记(四)】搜索引擎-Web模块

❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你了解更多项目内容 目录 1.前言2.前端模块2.1页面设计2.2后端交互 3.部署到云服务器4.总结 1.前言 在前面的文…

25届最近5年华北电力大学自动化考研院校分析

华北电力大学(北京保定) 目录 一、学校学院专业简介 二、考试科目指定教材 三、近5年考研分数情况 四、近5年招生录取情况 五、最新一年分数段图表 六、初试大纲复试大纲 七、学费&奖学金&就业方向 一、学校学院专业简介 二、考试科目指…

论文导读 | knowledge-based VQA

背景介绍 传统的视觉问答(Visual Question Answering, VQA)基准测试主要集中在简单计数、视觉属性和物体检测等问题上,这些问题不需要超出图像内容的推理或知识。然而,在knowledge-based VQA中,仅靠图像无法回答给定的…

DA-LSTM多输入分类|蜻蜓算法-长短期神经网络|Matlab

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译&am…

大疆2025校招内推

需要内推码的请留言哦 期待你的加入

哪个麦克风唱歌效果好,哪个麦克风好,无线麦克风十大排名分享

​在数字化时代的背景下,声音的传播与记录变得日益重要。无论是会议室、教室还是户外场所,无线领夹麦克风凭借其便携性和稳定的连接性能,成为人们沟通表达的首选工具。面对众多选择,我为你精选了几款性能卓越且性价比高的无线领夹…

DVWA sql手注学习(巨详细不含sqlmap)

这篇文章主要记录学习sql注入的过程中遇到的问题已经一点学习感悟,过程图片会比较多,比较基础和详细,不存在看不懂哪一步的过程 文章目录 靶场介绍SQL注入 lowSQL注入 MediumSQL注入 HighSQL注入 Impossible 靶场介绍 DVWA(Damn…

巴图自动化Modbus协议转Profinet协议网关模块连智能仪表与PLC通讯

一、现场要求:PLC作为控制器,仪表设备作为执行设备。执行设备可以实时响应PLC传送的指令,并将数据反馈给PLC,从而实现PLC对仪表设备的控制和监控,实现对生产过程的精确控制。 二、解决方案:通过巴图自动化Modbus协议转Profinet协议…

C++ 智能指针内存泄漏问题

shared_ptr相互嵌套导致循环引用 代码示例 #include <iostream> #include <memory> using namespace std;class B;class A { public:std::shared_ptr<B> b_ptr;~A() { std::cout << "A destroyed\n"; } };class B { public:std::shared_pt…

明星代言6个提升企业形象的杀手锏-华媒舍

在当今竞争激烈的商业世界中&#xff0c;企业形象的塑造对于品牌的发展至关重要。而明星代言作为一种常见的营销手段&#xff0c;被广泛使用来提升企业形象和产品销售。本文将介绍明星代言的六个杀手锏&#xff0c;帮助您了解如何通过明星代言来提升企业形象。 1. 拥有广泛的影…

PCB设计时,信号走线要先过ESD/TVS管,这是为什么?

目录 为什么有上面这个问题&#xff1f; 问题的原因——走线电感 走线电感的阻抗 电感的影响 小结 都说接口处的信号要先过ESD/TVS管&#xff0c;然后拉到被保护器件&#xff0c;为什么不这样做效果就不好&#xff1f;那如果受板子实际情况限制&#xff0c;必须这样layout…

专题二:Spring源码编译

目录 下载源码 配置Gradle 配置环境变量 配置setting文件 配置Spring源码 配置文件调整 问题解决 完整配置 gradel.properties build.gradle settiings.gradel 在专题一&#xff1a; Spring生态初探中我们从整体模块对Spring有个整体的印象&#xff0c;现在正式从最…

经典卷积神经网络 LeNet

一、实例图片 #我们传入的是28*28&#xff0c;所以加了padding net nn.Sequential(nn.Conv2d(1, 6, kernel_size5, padding2), nn.Sigmoid(),nn.AvgPool2d(kernel_size2, stride2),nn.Conv2d(6, 16, kernel_size5), nn.Sigmoid(),nn.AvgPool2d(kernel_size2, stride2),nn.Flat…

Android EditText的属性与用法

EditText 是编辑框控件&#xff0c;可以接收用户输入&#xff0c;并在程序中对用户输入进行处理。EditText在App里随处可见&#xff0c;在进行搜索、聊天、拨号等需要输入信息的场合&#xff0c;都可以使用 EditText。 图1 编辑框示意图 EditText 是TextView的子类&#xff0c…

吴恩达深度学习笔记:机器学习策略(2)(ML Strategy (2)) 2.5-2.6

目录 第三门课 结构化机器学习项目&#xff08;Structuring Machine Learning Projects&#xff09;第二周&#xff1a;机器学习策略&#xff08;2&#xff09;(ML Strategy (2))2.5 数据分布不匹配时的偏差与方差的分析&#xff08;Bias and Variance with mismatched data di…

下载安装MySQL

1.软件的下载 打开官网下载mysql-installer-community-8.0.37.0.msi 2.软件的安装 mysql下载完成后&#xff0c;找到下载文件&#xff0c;双击安装 3.配置环境变量 4.自带客户端登录与退出

CSS filter(滤镜)属性,并实现页面置灰效果

目录 一、filter&#xff08;滤镜&#xff09;属性 二、准备工作 三、常用的filter属性值 1、blur(px) 2、brightness(%) 3、contrast(%) 4、grayscale(%) 5、opacity(%) 6、saturate(%) 7、sepia(%) 8、invert(%) 9、hue-rotate(deg) 10、drop-shadow(h-shadow v…

前端JS 插件实现下载【js-tool-big-box,下载大文件(fetch请求 + 下载功能版)

上一节&#xff0c;我们添加了下载大文件的纯功能版&#xff0c;意思就是需要开发者&#xff0c;在自己项目里发送请求&#xff0c;请求成功后&#xff0c;获取文件流的blob数据&#xff0c;然后 js-tool-big-box 帮助下载。 但考虑到&#xff0c;有些项目&#xff0c;可能比较…