分子AI预测赛笔记

news2025/1/17 4:08:50

#AI夏令营 #Datawhale #夏令营

Taks1 跑通baseline

根据task1跑通baseline

注册账号

直接注册或登录百度账号,etc

fork 项目

零基础入门 Ai 数据挖掘竞赛-速通 Baseline - 飞桨AI Studio星河社区

启动项目 

选择运行环境,并点击确定,没有特殊要求就默认的基础版就可以了

等待片刻,等待在线项目启动

运行项目代码

点击 运行全部Cell

程序运行完生成文件 submit.csv

这个文件就最终提交的文件。

 Taks2 赛题深入解析

理解赛题,了解机器学习竞赛通用流程

数据字段理解 

Docs

对 Smiles、Assay (DC50/Dmax)、Assay (Protac to Target, IC50)、Assay (Cellular activities, IC5、Article DOI、InChI字段学习分析

预测目标

选手需要预测PROTACs的降解能力,具体来说,就是预测Label字段的值。

根据DC50Dmax的值来判断降解能力的好坏:如果DC50大于100nM且Dmax小于80%,则Label为0;如果DC50小于等于100nM或Dmax大于等于80%,则Label为1。

零基础入门AI(机器学习)竞赛 - 飞书云文档
https://datawhaler.feishu.cn/wiki/Ue7swBbiJiBhsdk5SupcqfL7nLX

Docs

Task3初步调试参数

学习9群助教 【温酒相随】原创, 九月助教编辑调整, 首发于B站~

https://www.bilibili.com/read/cv35897986/?jump_opus=1

导入库、训练集和测试集

# 1. 导入需要用到的相关库
# 导入 pandas 库,用于数据处理和分析
import pandas as pd
# 导入 numpy 库,用于科学计算和多维数组操作
import numpy as np
# 从 lightgbm 模块中导入 LGBMClassifier 类
from lightgbm import LGBMClassifier


# 2. 读取训练集和测试集
# 使用 read_excel() 函数从文件中读取训练集数据,文件名为 'traindata-new.xlsx'
train = pd.read_excel('./data/train.xlsx')
# 使用 read_excel() 函数从文件中读取测试集数据,文件名为 'testdata-new.xlsx'
test = pd.read_excel('./data/test.xlsx')
train

 查看数据类型

data = train.info()

data

部分数据的数据项比较少。可以筛掉减少拟合

# 筛选
train = train.iloc[:,1:]
test = test.iloc[:,1:]
# 行保留 列从第一个下标1开始
# train['lan'].value_counts()# language

查看object类型的列表


# 查看object类型的列表
train.select_dtypes(include = 'object').columns

缺失值查看

# 缺失值查看

temp = train.isnull().sum()

temp[temp > 0]

唯一值个数判断 

# 唯一值个数判断
# fea = train.columns
fea = train.columns.tolist()
fea

 输出唯一值

# 输出唯一值

for f in fea:

    print(f,train[f].nunique());# nunique() 统计列中的唯一值

 筛选

# 定义了一个空列表cols,用于存储在测试数据集中非空值小于10个的列名。
cols = []
for f in test.columns:
    if test[f].notnull().sum() < 10:
        cols.append(f)
cols

# 使用drop方法从训练集和测试集中删除了这些列,以避免在后续的分析或建模中使用这些包含大量缺失值的列
train = train.drop(cols, axis=1)
test = test.drop(cols, axis=1)
# 使用pd.concat将清洗后的训练集和测试集合并成一个名为data的DataFrame,便于进行统一的特征工程处理
data = pd.concat([train, test], axis=0, ignore_index=True)
newData = data.columns[2:]

将SMILES转换为分子对象列表,并转换为SMILES字符串列表  

data['smiles_list'] = data['Smiles'].apply(lambda x:[Chem.MolToSmiles(mol, isomericSmiles=True) for mol in [Chem.MolFromSmiles(x)]])
data['smiles_list'] = data['smiles_list'].map(lambda x: ' '.join(x))  

用TfidfVectorizer计算TF-IDF 

tfidf = TfidfVectorizer(max_df = 0.9, min_df = 1, sublinear_tf = True)

res = tfidf.fit_transform(data['smiles_list'])

转为dataframe格式 

# 将结果转为dataframe格式
tfidf_df = pd.DataFrame(res.toarray())
tfidf_df.columns = [f'smiles_tfidf_{i}' for i in range(tfidf_df.shape[1])]
# 按列合并到data数据
data = pd.concat([data, tfidf_df], axis=1)

自然数编码

# 自然数编码
def label_encode(series):
    unique = list(series.unique())
    return series.map(dict(zip(
        unique, range(series.nunique())
    )))
# 对每个类转换为其编码
for col in cols:
    if data[col].dtype == 'object':
        data[col]  = label_encode(data[col])

构建训练集和测试集 

# 提取data中label行不为空的,将其作为train的数据并更新索引
train = data[data.Label.notnull()].reset_index(drop=True)
# 提取data中label行为空的,将其作为teat的数据并更新索引
test = data[data.Label.isnull()].reset_index(drop=True)
# 特征筛选
features = [f for f in train.columns if f not in ['uuid','Label','smiles_list']]
# 构建训练集和测试集
x_train = train[features]
x_test = test[features]
# 训练集标签
y_train = train['Label'].astype(int)

使用采用5折交叉验证(KFold(n_splits=5

def cv_model(clf, train_x, train_y, test_x, clf_name, seed=2022):

    # 进行5折交叉验证
    kf = KFold(n_splits=5, shuffle=True, random_state=seed)
    train = np.zeros(train_x.shape[0])
    test = np.zeros(test_x.shape[0])
    cv_scores = []
    # 每一折数据采用训练索引和验证索引来分割训练集和验证集
    for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
        print('************************************ {} {}************************************'.format(str(i+1), str(seed)))

        trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
        # 配置CatBoost分类器的参数
        params = {'learning_rate': 0.05, 'depth': 8, 'l2_leaf_reg': 10, 'bootstrap_type':'Bernoulli','random_seed':seed,
                  'od_type': 'Iter', 'od_wait': 100, 'random_seed': 11, 'allow_writing_files': False, 'task_type':'CPU'}
        # 使用CatBoost分类器训练模型
        model = clf(iterations=20000, **params, eval_metric='AUC')

        model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
                  metric_period=100,
                  cat_features=[],
                  use_best_model=True,
                  verbose=1)
        val_pred  = model.predict_proba(val_x)[:,1]
        test_pred = model.predict_proba(test_x)[:,1]

        train[valid_index] = val_pred
        test += test_pred / kf.n_splits
        cv_scores.append(f1_score(val_y, np.where(val_pred>0.5, 1, 0)))

        print(cv_scores)

    print("%s_score_list:" % clf_name, cv_scores)
    print("%s_score_mean:" % clf_name, np.mean(cv_scores))
    print("%s_score_std:" % clf_name, np.std(cv_scores))
    return train, test
    
cat_train, cat_test = cv_model(CatBoostClassifier, x_train, y_train, x_test, "cat")

这段代码是一个交叉验证模型的函数,用于训练和评估分类器模型。具体来说,它使用了CatBoost分类器,在给定的训练数据集上进行了5折交叉验证,并返回了训练集和测试集的预测结果。

函数中的参数包括:

  • clf: 分类器模型的类对象,这里是CatBoostClassifier。
  • train_x, train_y: 训练数据的特征和标签。
  • test_x: 测试数据的特征。
  • clf_name: 分类器的名称,用于输出结果。
  • seed: 随机种子,默认为2022。

函数的主要流程如下:

  1. 创建了一个5折交叉验证器(KFold)。
  2. 初始化了训练集和测试集的预测结果数组。
  3. 在每一折循环中,根据训练索引和验证索引分割训练集和验证集。
  4. 配置CatBoost分类器的参数,并使用训练集训练模型。
  5. 对验证集和测试集进行预测,并将预测结果加入到结果数组中。
  6. 计算并保存每一折验证集的F1分数。
  7. 输出每一折的F1分数列表、平均分数和标准差。
  8. 返回训练集和测试集的预测结果。

通过调用这个函数,可以得到CatBoost分类器在给定数据集上的交叉验证结果,评估模型的性能以及获取训练集和测试集的预测结果。

输出结果

from datetime import datetime

current_time = datetime.now()  # 获取当前时间
formatted_time = current_time.strftime("%Y-%m-%d %H:%M:%S")  # 格式化时间

# print("当前时间:", current_time)
# print("格式化时间:", formatted_time)
# 5. 保存结果文件到本地
pd.DataFrame(
    {
        'uuid': test['uuid'],
        'Label': pred
    }
).to_csv(formatted_time+ '.csv', index=None)

 本地torch部分未用

这个夏令营不简单 #AI夏令营 #Datawhale #夏令营 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1895093.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

因果推断前沿研究方向都在这了!

【因果推断】是研究如何从观测数据中识别和估计变量之间因果关系的领域。它在医学、经济学、环境科学等多个领域有着广泛的应用&#xff0c;帮助科学家和决策者理解复杂现象背后的因果机制。通过使用统计方法、机器学习技术以及逻辑推理&#xff0c;因果推断能够揭示变量间的潜…

Frrouting快速入门——OSPF组网(一)

FRR简介 FRR是FRRouting的简称&#xff0c;是一个开源的路由交换软件套件。其作者源自老牌项目quaga的成员&#xff0c;也可以算是quaga的新版本。 使用时一般查看此文档&#xff1a;https://docs.frrouting.org/projects/dev-guide/en/latest/index.html FRR支持的协议众多…

Objection 对命令的批量操作

假定现在需要对好多不同的类进行批量hook&#xff0c;逐个hook非常繁琐&#xff0c;那么可以要将这些hook的类放到一个文件里&#xff0c;并且在这些类的前面加上hook命令&#xff0c;内容如下 使用如下命令执行该文件中的命令 objection -g 测试 explore -c d:/hookData/toHoo…

go sync包(五) WaitGroup

WaitGroup sync.WaitGroup 可以等待一组 Goroutine 的返回&#xff0c;一个比较常见的使用场景是批量发出 RPC 或者 HTTP 请求&#xff1a; requests : []*Request{...} wg : &sync.WaitGroup{} wg.Add(len(requests))for _, request : range requests {go func(r *Reque…

深入解读:如何解决微调扩散模型时微调数据集和训练数据集之间的差距过大问题?

Diffusion Models专栏文章汇总&#xff1a;入门与实战 前言&#xff1a;在微调扩散模型的时候经常会遇到微调数据集和训练数据集之间的差距过大&#xff0c;导致训练效果很差。在图像生成任务中并不明显&#xff0c;但是在视频生成任务中这个问题非常突出。这篇博客深入解读如何…

采用B/S模式 可跨平台使用的数据采集监控平台!

数据采集监控平台是一款专注于工业企业生产设备管理、数据采集、数据分析、数据管理、数据存储、数据传输等的软件系统。系统具备丰富的接口&#xff0c;配置灵活&#xff0c;方便部署&#xff0c;通过采集企业生产设备的数据集中处理&#xff0c;将各个信息孤岛有机连接&#…

2024年上半年数据泄露风险态势报告-百度网盘下载

在快速崛起的数字经济时代&#xff0c;数据作为企业的核心资产及重要战略资源&#xff0c;在高速增长的同时&#xff0c;其背后的数据风险也在不断攀升&#xff0c;日渐复杂的数据泄露形势&#xff0c;已成为企业数字化发展赛道的严重阻碍。 《2024年上半年数据泄露风险态势报…

MySQL 8.0 架构 之 中继日志(Relay log)

文章目录 MySQL 8.0 架构 之 中继日志&#xff08;Relay log&#xff09;中继日志&#xff08;Relay log&#xff09;概述相关参数参考 【声明】文章仅供学习交流&#xff0c;观点代表个人&#xff0c;与任何公司无关。 来源|WaltSQL和数据库技术(ID:SQLplusDB) MySQL 8.0 OCP …

软件测评中心▏软件验收测试方法和测试内容简析

在当今数字化转型的浪潮下&#xff0c;软件验收测试变得越来越重要。软件验收测试&#xff0c;顾名思义&#xff0c;是对软件进行验收的过程中进行的一项测试。它用于确保软件在满足需求、达到预期效果后才能正式交付给客户使用。软件验收测试是一项全面、系统的测试过程&#…

软信天成:您的数据仓库真的“达标”了吗?

在复杂多变的数据环境中&#xff0c;您的数据仓库是否真的“达标”了&#xff1f;本文将深入探讨数据仓库的定义、合格标准及其与数据库的区别&#xff0c;帮助您全面审视并优化您的数据仓库。 一、什么是数据仓库&#xff1f; 数据仓库是一个面向主题的、集成的、相对稳定的、…

昇思25天学习打卡营第15天|ResNet50图像分类

学AI还能赢奖品&#xff1f;每天30分钟&#xff0c;25天打通AI任督二脉 (qq.com) ResNet50图像分类 图像分类是最基础的计算机视觉应用&#xff0c;属于有监督学习类别&#xff0c;如给定一张图像(猫、狗、飞机、汽车等等)&#xff0c;判断图像所属的类别。本章将介绍使用ResN…

Spzhi知识付费社区主题免费下载

主题介绍 用typecho打造一款知识付费社区主题&#xff0c;带会员功能&#xff0c;为内容创业者提供知识变现一站式解决方案&#xff0c;让用户沉淀到自己的平台&#xff0c;形成自己的私域流量池&#xff0c;打造流量闭环&#xff0c;零门槛搭建你的移动网络课堂 主题功能 支…

收银系统源码-收银台营销功能-购物卡

1. 功能描述 购物卡&#xff1a;基于会员的电子购物卡&#xff0c;支持设置时效、适用门店、以及可用商品&#xff1b;支持售卖和充值赠送&#xff0c;在收银台可以使用&#xff1b; 2.适用场景 会员充值赠送活动&#xff0c;例如会员充值1000元&#xff0c;赠送面值100元购…

docker初始化运行mysql容器时自动导入数据库存储过程问题

问题&#xff1a;用navicat导出的数据库脚本&#xff0c;在docker初始化运行mysql容器时&#xff0c;导入到存储过程时出错。 ERROR 1064 (42000) at line 2452: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for t…

2065.力扣每日一题7/1 Java(深度优先搜索DFS)

博客主页&#xff1a;音符犹如代码系列专栏&#xff1a;算法练习关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 首先构建一个图…

【VIM的使用】

Vim 是一个非常强大的文本编辑器&#xff0c;尤其在 Linux 环境下被广泛使用。它基于 vi 编辑器开发而来&#xff0c;增加了许多功能和改进。下面是一个简化的 Vim 教程&#xff0c;帮助你快速上手&#xff1a; 启动 Vim 要启动 Vim&#xff0c;只需在终端中输入 vim [filen…

104.二叉树的最大深度——二叉树专题复习

深度优先搜索&#xff08;DFS&#xff09;是一种常用的递归算法&#xff0c;用于解决树形结构的问题。在计算二叉树的最大深度时&#xff0c;DFS方法会从根节点开始&#xff0c;递归地计算左右子树的最大深度&#xff0c;然后在返回时更新当前节点所在路径的最大深度。 如果我…

协程调度模块

什么是协程和协程调度&#xff1f; 基本概念 协程 协程是一种比线程更轻量级的并发编程结构&#xff0c;它允许在函数执行过程中暂停和恢复执行状态&#xff0c;从而实现非阻塞式编程。协程又被称为用户级线程&#xff0c;这是由于协程包括上下文切换在内的全部执行逻辑都是…

Matplotlib 文本

可以使用 xlabel、ylabel、text向图中添加文本 mu, sigma 100, 15 x mu sigma * np.random.randn(10000)# the histogram of the data n, bins, patches plt.hist(x, 50, densityTrue, facecolorg, alpha0.75)plt.xlabel(Smarts) plt.ylabel(Probability) plt.title(Histo…

拼接各列内容再分组统计

某个表格的第1列是人名&#xff0c;后面多列是此人某次采购的产品&#xff0c;一个人一次可以采购多个同样的产品&#xff0c;也可以多次采购。 ABCD1JohnAppleAppleOrange2PaulGrape3JohnPear4SteveLycheeGrape5JessicaApple 需要整理成交叉表&#xff0c;上表头是产品&…