昇思25天学习打卡营第15天|ResNet50图像分类

news2025/1/17 6:16:18

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

ResNet50图像分类

图像分类是最基础的计算机视觉应用,属于有监督学习类别,如给定一张图像(猫、狗、飞机、汽车等等),判断图像所属的类别。本章将介绍使用ResNet50网络对CIFAR-10数据集进行分类。

ResNet网络介绍

ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。

resnet-1

ResNet网络提出了残差网络结构(Residual Network)来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)。论文中使用ResNet网络在CIFAR-10数据集上的训练误差与测试误差图如下图所示,图中虚线表示训练误差,实线表示测试误差。由图中数据可以看出,ResNet网络层数越深,其训练误差和测试误差越小。

resnet-4

了解ResNet网络更多详细内容,参见ResNet论文。

ImageNet 的示例网络架构。左:VGG-19 模型作为参考。中:一个具有 34 个参数层的普通网络。右:一个具有 34 个参数层的残差网络。虚线快捷连接(shortcut connections)用于增加维度。

数据集准备与加载

CIFAR-10数据集共有60000张32*32的彩色图像,分为10个类别,每类有6000张图,数据集一共有50000张训练图片和10000张评估图片。首先,如下示例使用download接口下载并解压,目前仅支持解析二进制版本的CIFAR-10文件(CIFAR-10 binary version)。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"

download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)
Creating data folder...
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz (162.2 MB)

file_sizes: 100%|█████████████████████████████| 170M/170M [00:00<00:00, 198MB/s]
Extracting tar.gz file...
Successfully downloaded / unzipped to ./datasets-cifar10-bin
'./datasets-cifar10-bin'

下载后的数据集目录结构如下:

datasets-cifar10-bin/cifar-10-batches-bin
├── batches.meta.text
├── data_batch_1.bin
├── data_batch_2.bin
├── data_batch_3.bin
├── data_batch_4.bin
├── data_batch_5.bin
├── readme.html
└── test_batch.bin

然后,使用mindspore.dataset.Cifar10Dataset接口来加载数据集,并进行相关图像增强操作。

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstype

data_dir = "./datasets-cifar10-bin/cifar-10-batches-bin"  # 数据集根目录
batch_size = 256  # 批量大小
image_size = 32  # 训练图像空间大小
workers = 4  # 并行线程个数
num_classes = 10  # 分类数量


def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):

    data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,
                                 usage=usage,
                                 num_parallel_workers=workers,
                                 shuffle=True)

    trans = []
    if usage == "train":
        trans += [
            vision.RandomCrop((32, 32), (4, 4, 4, 4)),
            vision.RandomHorizontalFlip(prob=0.5)
        ]

    trans += [
        vision.Resize(resize),
        vision.Rescale(1.0 / 255.0, 0.0),
        vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),
        vision.HWC2CHW()
    ]

    target_trans = transforms.TypeCast(mstype.int32)

    # 数据映射操作
    data_set = data_set.map(operations=trans,
                            input_columns='image',
                            num_parallel_workers=workers)

    data_set = data_set.map(operations=target_trans,
                            input_columns='label',
                            num_parallel_workers=workers)

    # 批量操作
    data_set = data_set.batch(batch_size)

    return data_set


# 获取处理后的训练与测试数据集

dataset_train = create_dataset_cifar10(dataset_dir=data_dir,
                                       usage="train",
                                       resize=image_size,
                                       batch_size=batch_size,
                                       workers=workers)
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_cifar10(dataset_dir=data_dir,
                                     usage="test",
                                     resize=image_size,
                                     batch_size=batch_size,
                                     workers=workers)
step_size_val = dataset_val.get_dataset_size()

下载CIFAR-10数据集及数据增强操作,如随机裁剪、水平翻转、调整大小、归一化等,增加数据的多样性,提高了模型的泛化能力。

对CIFAR-10训练数据集进行可视化。

import matplotlib.pyplot as plt
import numpy as np

data_iter = next(dataset_train.create_dict_iterator())

images = data_iter["image"].asnumpy()
labels = data_iter["label"].asnumpy()
print(f"Image shape: {images.shape}, Label shape: {labels.shape}")

# 训练数据集中,前六张图片所对应的标签
print(f"Labels: {labels[:6]}")

classes = []

with open(data_dir + "/batches.meta.txt", "r") as f:
    for line in f:
        line = line.rstrip()
        if line:
            classes.append(line)

# 训练数据集的前六张图片
plt.figure()
for i in range(6):
    plt.subplot(2, 3, i + 1)
    image_trans = np.transpose(images[i], (1, 2, 0))
    mean = np.array([0.4914, 0.4822, 0.4465])
    std = np.array([0.2023, 0.1994, 0.2010])
    image_trans = std * image_trans + mean
    image_trans = np.clip(image_trans, 0, 1)
    plt.title(f"{classes[labels[i]]}")
    plt.imshow(image_trans)
    plt.axis("off")
plt.show()
Image shape: (256, 3, 32, 32), Label shape: (256,)
Labels: [1 1 2 9 4 0]

展示训练数据集的前六张图片。

构建网络

残差网络结构(Residual Network)是ResNet网络的主要亮点,ResNet使用残差网络结构后可有效地减轻退化问题,实现更深的网络结构设计,提高网络的训练精度。本节首先讲述如何构建残差网络结构,然后通过堆叠残差网络来构建ResNet50网络。

构建残差网络结构

残差网络结构图如下图所示,残差网络由两个分支构成:一个主分支,一个shortcuts(图中弧线表示)。主分支通过堆叠一系列的卷积操作得到,shortcuts从输入直接到输出,主分支输出的特征矩阵𝐹(𝑥)加上shortcuts输出的特征矩阵𝑥𝑥得到𝐹(𝑥)+𝑥,通过Relu激活函数后即为残差网络最后的输出。

residual

残差网络结构主要由两种,一种是Building Block,适用于较浅的ResNet网络,如ResNet18和ResNet34;另一种是Bottleneck,适用于层数较深的ResNet网络,如ResNet50、ResNet101和ResNet152。

Building Block

Building Block结构图如下图所示,主分支有两层卷积网络结构:

  • 主分支第一层网络以输入channel为64为例,首先通过一个3×3的卷积层,然后通过Batch Normalization层,最后通过Relu激活函数层,输出channel为64;
  • 主分支第二层网络的输入channel为64,首先通过一个3×3的卷积层,然后通过Batch Normalization层,输出channel为64。

最后将主分支输出的特征矩阵与shortcuts输出的特征矩阵相加,通过Relu激活函数即为Building Block最后的输出。

building-block-5

主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。如果主分支与shortcuts输出的特征矩阵shape不相同,如输出channel是输入channel的一倍时,shortcuts上需要使用数量与输出channel相等,大小为1×1的卷积核进行卷积操作;若输出的图像较输入图像缩小一倍,则要设置shortcuts中卷积操作中的stride为2,主分支第一层卷积操作的stride也需设置为2。

如下代码定义ResidualBlockBase类实现Building Block结构。

from typing import Type, Union, List, Optional
import mindspore.nn as nn
from mindspore.common.initializer import Normal

# 初始化卷积层与BatchNorm的参数
weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支

        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out
Bottleneck

Bottleneck结构图如下图所示,在输入相同的情况下Bottleneck结构相对Building Block结构的参数数量更少,更适合层数较深的网络,ResNet50使用的残差结构就是Bottleneck。该结构的主分支有三层卷积结构,分别为1×1的卷积层、3×3卷积层和1×1的卷积层,其中1×1的卷积层分别起降维和升维的作用。

  • 主分支第一层网络以输入channel为256为例,首先通过数量为64,大小为1×1的卷积核进行降维,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;
  • 主分支第二层网络通过数量为64,大小为3×3的卷积核提取特征,然后通过Batch Normalization层,最后通过Relu激活函数层,其输出channel为64;
  • 主分支第三层通过数量为256,大小1×1的卷积核进行升维,然后通过Batch Normalization层,其输出channel为256。

最后将主分支输出的特征矩阵与shortcuts输出的特征矩阵相加,通过Relu激活函数即为Bottleneck最后的输出。

building-block-6

主分支与shortcuts输出的特征矩阵相加时,需要保证主分支与shortcuts输出的特征矩阵shape相同。如果主分支与shortcuts输出的特征矩阵shape不相同,如输出channel是输入channel的一倍时,shortcuts上需要使用数量与输出channel相等,大小为1×1的卷积核进行卷积操作;若输出的图像较输入图像缩小一倍,则要设置shortcuts中卷积操作中的stride为2,主分支第二层卷积操作的stride也需设置为2。

如下代码定义ResidualBlock类实现Bottleneck结构。

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):

        identity = x  # shortscuts分支

        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)

        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out
构建ResNet50网络

ResNet网络层结构如下图所示,以输入彩色图像224×224为例,首先通过数量64,卷积核大小为7×7,stride为2的卷积层conv1,该层输出图片大小为112×112,输出channel为64;然后通过一个3×3的最大下采样池化层,该层输出图片大小为56×56,输出channel为64;再堆叠4个残差网络块(conv2_x、conv3_x、conv4_x和conv5_x),此时输出图片大小为7×7,输出channel为2048;最后通过一个平均池化层、全连接层和softmax,得到分类概率。

resnet-layer

对于每个残差网络块,以ResNet50网络中的conv2_x为例,其由3个Bottleneck结构堆叠而成,每个Bottleneck输入的channel为64,输出channel为256。

如下示例定义make_layer实现残差块的构建,其参数如下所示:

  • last_out_channel:上一个残差网络输出的通道数。
  • block:残差网络的类别,分别为ResidualBlockBaseResidualBlock
  • channel:残差网络输入的通道数。
  • block_nums:残差网络块堆叠的个数。
  • stride:卷积移动的步幅。
def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支

    if stride != 1 or last_out_channel != channel * block.expansion:

        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])

    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))

    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):

        layers.append(block(in_channel, channel))

    return nn.SequentialCell(layers)

ResNet50网络共有5个卷积结构,一个平均池化层,一个全连接层,以CIFAR-10数据集为例:

  • conv1:输入图片大小为32×32,输入channel为3。首先经过一个卷积核数量为64,卷积核大小为7×7,stride为2的卷积层;然后通过一个Batch Normalization层;最后通过Reul激活函数。该层输出feature map大小为16×16,输出channel为64。
  • conv2_x:输入feature map大小为16×16,输入channel为64。首先经过一个卷积核大小为3×3,stride为2的最大下采样池化操作;然后堆叠3个[1×1,64;3×3,64;1×1,256]结构的Bottleneck。该层输出feature map大小为8×8,输出channel为256。
  • conv3_x:输入feature map大小为8×8,输入channel为256。该层堆叠4个[1×1,128;3×3,128;1×1,512]结构的Bottleneck。该层输出feature map大小为4×4,输出channel为512。
  • conv4_x:输入feature map大小为4×4,输入channel为512。该层堆叠6个[1×1,256;3×3,256;1×1,1024]结构的Bottleneck。该层输出feature map大小为2×2,输出channel为1024。
  • conv5_x:输入feature map大小为2×2,输入channel为1024。该层堆叠3个[1×1,512;3×3,512;1×1,2048]结构的Bottleneck。该层输出feature map大小为1×1,输出channel为2048。
  • average pool & fc:输入channel为2048,输出channel为分类的类别数。

如下示例代码实现ResNet50模型的构建,通过用调函数resnet50即可构建ResNet50模型,函数resnet50参数如下:

  • num_classes:分类的类别数,默认类别数为1000。
  • pretrained:下载对应的训练模型,并加载预训练模型中的参数到网络中。
from mindspore import load_checkpoint, load_param_into_net


class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()

        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)

    def construct(self, x):

        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)

        return x

def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrained_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)

    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrained_ckpt, replace=True)
        param_dict = load_checkpoint(pretrained_ckpt)
        load_param_into_net(model, param_dict)

    return model


def resnet50(num_classes: int = 1000, pretrained: bool = False):
    """ResNet50模型"""
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

残差网络通过跳跃连接(shortcuts)将输入直接添加到输出残差网络结构主要由两种,一种是Building Block,适用于较浅的ResNet网络;另一种是Bottleneck,适用于层数较深的ResNet网络。ResNet50模型由多个残差块(Residual Block)组成,每个残差块包含多个卷积层和批归一化层。堆叠不同数量的残差块,可以构建不同深度的ResNet模型。

模型训练与评估

本节使用ResNet50预训练模型进行微调。调用resnet50构造ResNet50模型,并设置pretrained参数为True,将会自动下载ResNet50预训练模型,并加载预训练模型中的参数到网络中。然后定义优化器和损失函数,逐个epoch打印训练的损失值和评估精度,并保存评估精度最高的ckpt文件(resnet50-best.ckpt)到当前路径的./BestCheckPoint下。

由于预训练模型全连接层(fc)的输出大小(对应参数num_classes)为1000, 为了成功加载预训练权重,我们将模型的全连接输出大小设置为默认的1000。CIFAR10数据集共有10个分类,在使用该数据集进行训练时,需要将加载好预训练权重的模型全连接层输出大小重置为10。

此处我们展示了5个epochs的训练过程,如果想要达到理想的训练效果,建议训练80个epochs。

# 定义ResNet50网络
network = resnet50(pretrained=True)

# 全连接层输入层的大小
in_channel = network.fc.in_channels
fc = nn.Dense(in_channels=in_channel, out_channels=10)
# 重置全连接层
network.fc = fc
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt (97.7 MB)

file_sizes: 100%|█████████████████████████████| 102M/102M [00:00<00:00, 131MB/s]
Successfully downloaded file to ./LoadPretrainedModel/resnet50_224_new.ckpt
# 设置学习率
num_epochs = 5
lr = nn.cosine_decay_lr(min_lr=0.00001, max_lr=0.001, total_step=step_size_train * num_epochs,
                        step_per_epoch=step_size_train, decay_epoch=num_epochs)
# 定义优化器和损失函数
opt = nn.Momentum(params=network.trainable_params(), learning_rate=lr, momentum=0.9)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')


def forward_fn(inputs, targets):
    logits = network(inputs)
    loss = loss_fn(logits, targets)
    return loss


grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)


def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss

import os

# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)

# 最佳模型存储路径
best_acc = 0
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best.ckpt"

if not os.path.exists(best_ckpt_dir):
    os.mkdir(best_ckpt_dir)

import mindspore.ops as ops


def train(data_loader, epoch):
    """模型训练"""
    losses = []
    network.set_train(True)

    for i, (images, labels) in enumerate(data_loader):
        loss = train_step(images, labels)
        if i % 100 == 0 or i == step_size_train - 1:
            print('Epoch: [%3d/%3d], Steps: [%3d/%3d], Train Loss: [%5.3f]' %
                  (epoch + 1, num_epochs, i + 1, step_size_train, loss))
        losses.append(loss)

    return sum(losses) / len(losses)


def evaluate(data_loader):
    """模型验证"""
    network.set_train(False)

    correct_num = 0.0  # 预测正确个数
    total_num = 0.0  # 预测总数

    for images, labels in data_loader:
        logits = network(images)
        pred = logits.argmax(axis=1)  # 预测结果
        correct = ops.equal(pred, labels).reshape((-1, ))
        correct_num += correct.sum().asnumpy()
        total_num += correct.shape[0]

    acc = correct_num / total_num  # 准确率

    return acc

# 开始循环训练
print("Start Training Loop ...")

for epoch in range(num_epochs):
    curr_loss = train(data_loader_train, epoch)
    curr_acc = evaluate(data_loader_val)

    print("-" * 50)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, curr_loss, curr_acc
    ))
    print("-" * 50)

    # 保存当前预测准确率最高的模型
    if curr_acc > best_acc:
        best_acc = curr_acc
        ms.save_checkpoint(network, best_ckpt_path)

print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)
Start Training Loop ...
Epoch: [  1/  5], Steps: [  1/196], Train Loss: [2.378]
Epoch: [  1/  5], Steps: [101/196], Train Loss: [1.535]
Epoch: [  1/  5], Steps: [196/196], Train Loss: [1.096]
--------------------------------------------------
Epoch: [  1/  5], Average Train Loss: [1.614], Accuracy: [0.598]
--------------------------------------------------
Epoch: [  2/  5], Steps: [  1/196], Train Loss: [0.990]
Epoch: [  2/  5], Steps: [101/196], Train Loss: [0.947]
Epoch: [  2/  5], Steps: [196/196], Train Loss: [0.964]
--------------------------------------------------
Epoch: [  2/  5], Average Train Loss: [1.006], Accuracy: [0.684]
--------------------------------------------------
Epoch: [  3/  5], Steps: [  1/196], Train Loss: [0.825]
Epoch: [  3/  5], Steps: [101/196], Train Loss: [0.843]
Epoch: [  3/  5], Steps: [196/196], Train Loss: [0.822]
--------------------------------------------------
Epoch: [  3/  5], Average Train Loss: [0.845], Accuracy: [0.721]
--------------------------------------------------
Epoch: [  4/  5], Steps: [  1/196], Train Loss: [0.713]
Epoch: [  4/  5], Steps: [101/196], Train Loss: [0.792]
Epoch: [  4/  5], Steps: [196/196], Train Loss: [0.772]
--------------------------------------------------
Epoch: [  4/  5], Average Train Loss: [0.774], Accuracy: [0.732]
--------------------------------------------------
Epoch: [  5/  5], Steps: [  1/196], Train Loss: [0.720]
Epoch: [  5/  5], Steps: [101/196], Train Loss: [0.790]
Epoch: [  5/  5], Steps: [196/196], Train Loss: [0.731]
--------------------------------------------------
Epoch: [  5/  5], Average Train Loss: [0.742], Accuracy: [0.736]
--------------------------------------------------
================================================================================
End of validation the best Accuracy is:  0.736, save the best ckpt file in ./BestCheckpoint/resnet50-best.ckpt

使用预训练的ResNet50模型进行微调,加快训练速度并提高模型性能。定义优化器、损失函数和训练循环,对模型进行训练,在验证集上评估模型性能。

可视化模型预测

定义visualize_model函数,使用上述验证精度最高的模型对CIFAR-10测试数据集进行预测,并将预测结果可视化。若预测字体颜色为蓝色表示为预测正确,预测字体颜色为红色则表示预测错误。

由上面的结果可知,5个epochs下模型在验证数据集的预测准确率在70%左右,即一般情况下,6张图片中会有2张预测失败。如果想要达到理想的训练效果,建议训练80个epochs。

import matplotlib.pyplot as plt


def visualize_model(best_ckpt_path, dataset_val):
    num_class = 10  # 对狼和狗图像进行二分类
    net = resnet50(num_class)
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    # 加载验证集的数据进行验证
    data = next(dataset_val.create_dict_iterator())
    images = data["image"]
    labels = data["label"]
    # 预测图像类别
    output = net(data['image'])
    pred = np.argmax(output.asnumpy(), axis=1)

    # 图像分类
    classes = []

    with open(data_dir + "/batches.meta.txt", "r") as f:
        for line in f:
            line = line.rstrip()
            if line:
                classes.append(line)

    # 显示图像及图像的预测值
    plt.figure()
    for i in range(6):
        plt.subplot(2, 3, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels.asnumpy()[i] else 'red'
        plt.title('predict:{}'.format(classes[pred[i]]), color=color)
        picture_show = np.transpose(images.asnumpy()[i], (1, 2, 0))
        mean = np.array([0.4914, 0.4822, 0.4465])
        std = np.array([0.2023, 0.1994, 0.2010])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')

    plt.show()


# 使用测试数据集进行验证
visualize_model(best_ckpt_path=best_ckpt_path, dataset_val=dataset_val)

可视化模型的预测结果,直观查看模型的预测,包括预测正确的样本和预测错误的样本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1895070.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spzhi知识付费社区主题免费下载

主题介绍 用typecho打造一款知识付费社区主题&#xff0c;带会员功能&#xff0c;为内容创业者提供知识变现一站式解决方案&#xff0c;让用户沉淀到自己的平台&#xff0c;形成自己的私域流量池&#xff0c;打造流量闭环&#xff0c;零门槛搭建你的移动网络课堂 主题功能 支…

收银系统源码-收银台营销功能-购物卡

1. 功能描述 购物卡&#xff1a;基于会员的电子购物卡&#xff0c;支持设置时效、适用门店、以及可用商品&#xff1b;支持售卖和充值赠送&#xff0c;在收银台可以使用&#xff1b; 2.适用场景 会员充值赠送活动&#xff0c;例如会员充值1000元&#xff0c;赠送面值100元购…

docker初始化运行mysql容器时自动导入数据库存储过程问题

问题&#xff1a;用navicat导出的数据库脚本&#xff0c;在docker初始化运行mysql容器时&#xff0c;导入到存储过程时出错。 ERROR 1064 (42000) at line 2452: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for t…

2065.力扣每日一题7/1 Java(深度优先搜索DFS)

博客主页&#xff1a;音符犹如代码系列专栏&#xff1a;算法练习关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 首先构建一个图…

【VIM的使用】

Vim 是一个非常强大的文本编辑器&#xff0c;尤其在 Linux 环境下被广泛使用。它基于 vi 编辑器开发而来&#xff0c;增加了许多功能和改进。下面是一个简化的 Vim 教程&#xff0c;帮助你快速上手&#xff1a; 启动 Vim 要启动 Vim&#xff0c;只需在终端中输入 vim [filen…

104.二叉树的最大深度——二叉树专题复习

深度优先搜索&#xff08;DFS&#xff09;是一种常用的递归算法&#xff0c;用于解决树形结构的问题。在计算二叉树的最大深度时&#xff0c;DFS方法会从根节点开始&#xff0c;递归地计算左右子树的最大深度&#xff0c;然后在返回时更新当前节点所在路径的最大深度。 如果我…

协程调度模块

什么是协程和协程调度&#xff1f; 基本概念 协程 协程是一种比线程更轻量级的并发编程结构&#xff0c;它允许在函数执行过程中暂停和恢复执行状态&#xff0c;从而实现非阻塞式编程。协程又被称为用户级线程&#xff0c;这是由于协程包括上下文切换在内的全部执行逻辑都是…

Matplotlib 文本

可以使用 xlabel、ylabel、text向图中添加文本 mu, sigma 100, 15 x mu sigma * np.random.randn(10000)# the histogram of the data n, bins, patches plt.hist(x, 50, densityTrue, facecolorg, alpha0.75)plt.xlabel(Smarts) plt.ylabel(Probability) plt.title(Histo…

拼接各列内容再分组统计

某个表格的第1列是人名&#xff0c;后面多列是此人某次采购的产品&#xff0c;一个人一次可以采购多个同样的产品&#xff0c;也可以多次采购。 ABCD1JohnAppleAppleOrange2PaulGrape3JohnPear4SteveLycheeGrape5JessicaApple 需要整理成交叉表&#xff0c;上表头是产品&…

vs2019 无法打开项目文件

vs2019 无法打开项目文件&#xff0c;无法找到 .NET SDK。请检查确保已安装此项且 global.json 中指定的版本(如有)与所安装的版本相匹配 原因&#xff1a;缺少组件 解决方案&#xff1a;选择需要的组件进行安装完成

速速来get新妙招!苹果手机护眼模式在哪里开启

在日常生活中&#xff0c;我们经常长时间使用手机&#xff0c;无论是工作还是娱乐&#xff0c;屏幕的蓝光都会对眼睛造成一定的伤害。为了减轻眼睛疲劳&#xff0c;苹果手机推出了护眼模式&#xff0c;也叫“夜览”模式&#xff0c;通过调整屏幕色温&#xff0c;让显示效果更温…

python数据分析入门学习笔记

目录 一、 数据分析有关的python库简介 (一)numpy (二)pandas (三)matplotlib (四)scipy (五)statsmodels (六)scikit-learn 二、 数据的导入和导出 三、 数据筛选 四、 数据描述 五、 数据处理 六、 统计分析 七、 可视化 八、 其它![](https://…

Java数据结构面试题(一)

目录 一.ArrayList和LinkedList的区别 二.ArrayList和Vector的区别 三.HashMap的底层实现 四.HashMap和ConcurrentHashMap的区别 五.HashMap和HashTable的区别 六.多线程的情况下使用HashMap呢&#xff1f; 七.HashMap的如何扩容呢&#xff1f; 八.哈希冲突 本专栏全是…

图像练习-识别中圆形锡点 (04)

图片 代码 cv::Mat src cv::imread("light_point.png", cv::IMREAD_COLOR);cv::Mat draw src.clone();cv::Rect rt0(20, 80, src.cols - 30, 190);cv::Rect rt1(20, 480, src.cols - 30, 190);cv::Mat gray;cv::cvtColor(src, gray, cv::COLOR_BGR2GRAY);cv::Mat …

RpcChannel的调用过程

目录 1. RPC调用方&#xff08;caller&#xff09;的调用(消费)过程 2.在caller下创建文件&#xff1a;calluserservice.cc 3.在src的include下创建文件&#xff1a;mprpcchannel.h 4.在src下创建mprpcchannel.cc 1. RPC调用方&#xff08;caller&#xff09;的调用(消费)过…

网络爬虫(一)深度优先爬虫与广度优先爬虫

1. 深度优先爬虫&#xff1a;深度优先爬虫是一种以深度为优先的爬虫算法。它从一个起始点开始&#xff0c;先访问一个链接&#xff0c;然后再访问该链接下的链接&#xff0c;一直深入地访问直到无法再继续深入为止。然后回溯到上一个链接&#xff0c;再继续深入访问下一个未被访…

堆结构、堆排序

堆 是完全二叉树&#xff0c;类似这种样式的 而这种有右子节点&#xff0c;没左子节点的就不是完全二叉树 分为大根堆和小根堆 大根堆是二叉树里每一颗子树的父节点都是这颗子树里最大的&#xff0c;即每一棵子树最大值是头节点的值 小根堆相反 把数组中从0开始的一段数人…

记录OSPF配置,建立邻居失败的过程

1.配置完ospf后&#xff0c;在路由表中不出现ospf相关信息 [SW2]ospf [SW2-ospf-1]are [SW2-ospf-1]area 0 [SW2-ospf-1-area-0.0.0.0]net [SW2-ospf-1-area-0.0.0.0]network 0.0.0.0 Jul 4 2024 22:11:58-08:00 SW2 DS/4/DATASYNC_CFGCHANGE:OID 1.3.6.1.4.1.2011.5.25 .1…

艺活网DIY手工制作网站源码 工艺制作教程平台源码,带数据

帝国CMS仿《手艺活》DIY手工制作网源码&#xff0c;仿手艺活自适应手机版模板。 带数据库和图片资源&#xff0c;一共5个G大小&#xff0c;下载需耐心。 92开发 手艺活网DIY手工制作网站源码 创意手工艺品制作教程平台系统帝国h5自适应手机端 是一套展示各种 DIY 小物品精美又…

PhysioLLM 个性化健康洞察:手表可穿戴设备实时数据 + 大模型

个性化健康洞察&#xff1a;可穿戴设备实时数据 大模型 提出背景PhysioLLM 图PhysioLLM 实现数据准备用户模型和洞察生成个性化数据总结和洞察是如何生成的&#xff1f; 解析分析 提出背景 论文&#xff1a;https://arxiv.org/pdf/2406.19283 虽然当前的可穿戴设备伴随应用&…