一、前言
使用 FastAPI 可以帮助我们更简单高效地部署 AI 交互业务。FastAPI 提供了快速构建 API 的能力,开发者可以轻松地定义模型需要的输入和输出格式,并编写好相应的业务逻辑。
FastAPI 的异步高性能架构,可以有效支持大量并发的预测请求,为用户提供流畅的交互体验。此外,FastAPI 还提供了容器化部署能力,开发者可以轻松打包 AI 模型为 Docker 镜像,实现跨环境的部署和扩展。
总之,使用 FastAPI 可以大大提高 AI 应用程序的开发效率和用户体验,为 AI 模型的部署和交互提供全方位的支持。
本篇在开源模型应用落地-FastAPI-助力模型交互-WebSocket篇(五)基础上,学习如何集成Tool获取实时数据,并以流式方式返回
二、术语
2.1.Tool
Tool(工具)是为了增强其语言模型的功能和实用性而设计的一系列辅助手段,用于扩展模型的能力。例如代码解释器(Code Interpreter)和知识检索(Knowledge Retrieval)等都属于其工具。
2.2.langchain预置的tools
https://github.com/langchain-ai/langchain/tree/v0.1.16/docs/docs/integrations/tools
基本这些工具能满足大部分需求,具体使用参见:
2.3.LangChain支持流式输出的方法
stream
:基本的流式传输方式,能逐步给出代理的动作和观察结果。astream
:异步的流式传输,用于异步处理需求的情况。astream_events
:更细致的流式传输,能流式传输代理的每个具体事件,如工具调用和结束、模型启动和结束等,便于深入了解和监控代理执行的详细过程。
2.4.langchainhub
是 LangChain 相关工具的集合中心,其作用在于方便开发者发现和共享常用的提示(Prompt)、链、代理等。
它受 Hugging Face Hub 启发,促进社区交流与协作,推动 LangChain 生态发展。当前,它在新架构中被置于 LangSmith 里,主要聚焦于 Prompt。
2.5.asyncio
是一个用于编写并发代码的标准库,它提供了构建异步应用程序的基础框架。
三、前置条件
3.1. 创建虚拟环境&安装依赖
增加Google Search以及langchainhub的依赖包
conda create -n fastapi_test python=3.10
conda activate fastapi_test
pip install fastapi websockets uvicorn
pip install --quiet langchain-core langchain-community langchain-openai
pip install google-search-results langchainhub
3.2. 注册Google Search API账号
参见:开源模型应用落地-FastAPI-助力模型交互-WebSocket篇(五)
3.3. 生成Google Search API的KEY
四、技术实现
4.1. 使用Tool&流式输出
# -*- coding: utf-8 -*-
import asyncio
import os
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain_community.utilities.serpapi import SerpAPIWrapper
from langchain_core.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' # 你的Open AI Key
os.environ["SERPAPI_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
llm = ChatOpenAI(model="gpt-3.5-turbo",temperature=0,max_tokens=512)
@tool
def search(query:str):
"""只有需要了解实时信息或不知道的事情的时候才会使用这个工具,需要传入要搜索的内容。"""
serp = SerpAPIWrapper()
result = serp.run(query)
print("实时搜索结果:", result)
return result
tools = [search]
template='''
Respond to the human as helpfully and accurately as possible. You have access to the following tools:
{tools}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation
'''
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template='''
{input}
{agent_scratchpad}
(reminder to respond in a JSON blob no matter what)
'''
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
print(prompt)
agent = create_structured_chat_agent(
llm, tools, prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
async def chat(params):
events = agent_executor.astream_events(params,version="v2")
async for event in events:
type = event['event']
if 'on_chat_model_stream' == type:
data = event['data']
chunk = data['chunk']
content = chunk.content
if content and len(content) > 0:
print(content)
asyncio.run(chat({"input": "广州现在天气如何?"}))
调用结果:
说明:
流式输出的数据结构为:
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='天', id='run-92515b63-4b86-4af8-8515-2f84def9dfab')}, 'run_id': '92515b63-4b86-4af8-8515-2f84def9dfab', 'name': 'ChatOpenAI', 'tags': ['seq:step:3'], 'metadata': {'ls_provider': 'openai', 'ls_model_name': 'gpt-3.5-turbo', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 512, 'ls_stop': ['\nObservation']}}
type: on_chat_model_stream
{'event': 'on_chat_model_stream', 'data': {'chunk': AIMessageChunk(content='气', id='run-92515b63-4b86-4af8-8515-2f84def9dfab')}, 'run_id': '92515b63-4b86-4af8-8515-2f84def9dfab', 'name': 'ChatOpenAI', 'tags': ['seq:step:3'], 'metadata': {'ls_provider': 'openai', 'ls_model_name': 'gpt-3.5-turbo', 'ls_model_type': 'chat', 'ls_temperature': 0.0, 'ls_max_tokens': 512, 'ls_stop': ['\nObservation']}}
4.2. 通过langchainhub使用公共prompt
在4.1使用Tool&流式输出的代码基础上进行调整
# -*- coding: utf-8 -*-
import asyncio
import os
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain_community.utilities.serpapi import SerpAPIWrapper
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' # 你的Open AI Key
os.environ["SERPAPI_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
from langchain import hub
llm = ChatOpenAI(model="gpt-3.5-turbo",temperature=0,max_tokens=512)
@tool
def search(query:str):
"""只有需要了解实时信息或不知道的事情的时候才会使用这个工具,需要传入要搜索的内容。"""
serp = SerpAPIWrapper()
result = serp.run(query)
print("实时搜索结果:", result)
return result
tools = [search]
prompt = hub.pull("hwchase17/structured-chat-agent")
print(prompt)
agent = create_structured_chat_agent(
llm, tools, prompt
)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
async def chat(params):
events = agent_executor.astream_events(params,version="v2")
async for event in events:
type = event['event']
if 'on_chat_model_stream' == type:
data = event['data']
chunk = data['chunk']
content = chunk.content
if content and len(content) > 0:
print(content)
asyncio.run(chat({"input": "广州现在天气如何?"}))
调用结果:
4.3. 整合代码
在开源模型应用落地-FastAPI-助力模型交互-WebSocket篇(五)的代码基础上进行调整
import uvicorn
import os
from typing import Annotated
from fastapi import (
Depends,
FastAPI,
WebSocket,
WebSocketException,
WebSocketDisconnect,
status,
)
from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor
from langchain_community.utilities import SerpAPIWrapper
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_KEY"] = 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' # 你的Open AI Key
os.environ["SERPAPI_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
class ConnectionManager:
def __init__(self):
self.active_connections: list[WebSocket] = []
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections.append(websocket)
def disconnect(self, websocket: WebSocket):
self.active_connections.remove(websocket)
async def send_personal_message(self, message: str, websocket: WebSocket):
await websocket.send_text(message)
async def broadcast(self, message: str):
for connection in self.active_connections:
await connection.send_text(message)
manager = ConnectionManager()
app = FastAPI()
async def authenticate(
websocket: WebSocket,
userid: str,
secret: str,
):
if userid is None or secret is None:
raise WebSocketException(code=status.WS_1008_POLICY_VIOLATION)
print(f'userid: {userid},secret: {secret}')
if '12345' == userid and 'xxxxxxxxxxxxxxxxxxxxxxxxxx' == secret:
return 'pass'
else:
return 'fail'
@tool
def search(query:str):
"""只有需要了解实时信息或不知道的事情的时候才会使用这个工具,需要传入要搜索的内容。"""
serp = SerpAPIWrapper()
result = serp.run(query)
print("实时搜索结果:", result)
return result
def get_prompt():
prompt = hub.pull("hwchase17/structured-chat-agent")
return prompt
async def chat(query):
global llm,tools
agent = create_structured_chat_agent(
llm, tools, get_prompt()
)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
events = agent_executor.astream_events({"input": query}, version="v1")
async for event in events:
type = event['event']
if 'on_chat_model_stream' == type:
data = event['data']
chunk = data['chunk']
content = chunk.content
if content and len(content) > 0:
print(content)
yield content
@app.websocket("/ws")
async def websocket_endpoint(*,websocket: WebSocket,userid: str,permission: Annotated[str, Depends(authenticate)],):
await manager.connect(websocket)
try:
while True:
text = await websocket.receive_text()
if 'fail' == permission:
await manager.send_personal_message(
f"authentication failed", websocket
)
else:
if text is not None and len(text) > 0:
async for msg in chat(text):
await manager.send_personal_message(msg, websocket)
except WebSocketDisconnect:
manager.disconnect(websocket)
print(f"Client #{userid} left the chat")
await manager.broadcast(f"Client #{userid} left the chat")
if __name__ == '__main__':
tools = [search]
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, max_tokens=512)
uvicorn.run(app, host='0.0.0.0',port=7777)
客户端:
<!DOCTYPE html>
<html>
<head>
<title>Chat</title>
</head>
<body>
<h1>WebSocket Chat</h1>
<form action="" onsubmit="sendMessage(event)">
<label>USERID: <input type="text" id="userid" autocomplete="off" value="12345"/></label>
<label>SECRET: <input type="text" id="secret" autocomplete="off" value="xxxxxxxxxxxxxxxxxxxxxxxxxx"/></label>
<br/>
<button onclick="connect(event)">Connect</button>
<hr>
<label>Message: <input type="text" id="messageText" autocomplete="off"/></label>
<button>Send</button>
</form>
<ul id='messages'>
</ul>
<script>
var ws = null;
function connect(event) {
var userid = document.getElementById("userid")
var secret = document.getElementById("secret")
ws = new WebSocket("ws://localhost:7777/ws?userid="+userid.value+"&secret=" + secret.value);
ws.onmessage = function(event) {
var messages = document.getElementById('messages')
var message = document.createElement('li')
var content = document.createTextNode(event.data)
message.appendChild(content)
messages.appendChild(message)
};
event.preventDefault()
}
function sendMessage(event) {
var input = document.getElementById("messageText")
ws.send(input.value)
input.value = ''
event.preventDefault()
}
</script>
</body>
</html>
调用结果:
用户输入:你好
不需要触发工具调用
模型输出:
用户输入:广州现在天气如何?
需要调用工具
模型输出:
```
Action:
```
{
"action": "Final Answer",
"action_input": "广州现在的天气是多云,温度为87华氏度,降水概率为7%,湿度为76%,风力为7英里/小时。"
}
```
PS:
1. 上面仅用于演示流式输出的效果,里面包含一些冗余的信息,例如:"action": "Final Answer",要根据实际情况过滤。
2. 页面输出的样式可以根据实际需要进行调整,此处仅用于演示效果。