大力出奇迹:大语言模型的崛起与挑战

news2024/11/17 1:30:39

随着人工智能(AI)技术的迅猛发展,特别是在自然语言处理(NLP)领域,大语言模型(LLM)的出现与应用,彻底改变了我们与机器互动的方式。本文将探讨ChatGPT等大语言模型的定义、误解、潜在问题以及它们在未来的发展方向。

ChatGPT的定义与起源

ChatGPT是一款由OpenAI公司推出的产品,是该公司大语言模型(LLM)系列中的一员。ChatGPT的前身包括GPT-1、GPT-2和GPT-3,这些模型在语言理解和生成方面已经取得了令人瞩目的成就。ChatGPT特别是在指令增强方面表现突出,通过一个友好的web界面,用户可以与其进行自然语言的交互。然而,ChatGPT不仅仅是一个聊天工具,它代表了大语言模型技术的集大成者。

大语言模型(LLM)是NLP领域的重要发展方向,与传统的特定任务小模型不同,LLM是基于大量数据进行训练的通用模型。传统的小模型通常是为特定任务设计的,例如意图识别(intention detection)或实体识别(entity detection),它们通过组合来实现复杂的对话系统。而LLM则是通过大规模的预训练,能够处理多种任务,并且展示了广泛的语言理解和生成能力。

大模型与小模型的对比

大语言模型的出现彻底颠覆了传统的小模型组合方式。小模型是为特定任务而设计的,例如银行账户查询机器人只能回答与账户相关的问题,但对于其他领域的问题则无能为力。而大语言模型通过预训练,吸收了海量的文本数据,具备了广泛的知识储备和语言生成能力。

例如,OpenAI的GPT-3拥有1750亿个参数,能够处理多种语言任务,并展示出惊人的语言生成能力。而在未来,预计会出现参数更庞大的模型,如传说中的GPT-4,其参数量可能高达100万亿,展示出更强的语言处理能力。

预训练与微调

预训练和微调是大语言模型的重要训练步骤。预训练阶段,大模型通过吸收大量的文本数据,掌握了基本的语言知识和生成能力。微调阶段,模型根据特定任务进行调整和优化,以提高其在特定领域的表现。

举例来说,一个经过预训练的保洁机器人已经掌握了基础的清洁技能,而微调阶段则是让它适应特定家庭的清洁需求。这种预训练和微调的组合,大大降低了模型的训练成本,同时提高了其通用性和实用性。

生成式预训练变换器(GPT)的原理

GPT中的G代表生成式(Generative),即模型通过生成文本来完成任务;P代表预训练(Pre-training),即模型通过大规模数据训练,掌握了广泛的语言知识;T代表变换器(Transformer),即模型通过编码器和解码器结构,处理输入的文本并生成输出。

变换器(Transformer)是GPT模型的核心结构。输入的文本通过编码器转换为向量表示,然后通过解码器生成输出。这个过程类似于图像压缩与解压缩,通过提取和还原信息,实现文本的理解与生成。

大语言模型的挑战与幻觉

尽管大语言模型在语言生成方面表现出色,但它们也面临一些挑战。其中最显著的问题之一是所谓的"幻觉"(hallucination),即模型在生成文本时,会产生一些不真实或错误的信息。这种幻觉可能源于模型对数据的压缩和还原过程中的信息丢失和补充。

例如,当问及"苹果的平方根是多少"这样的问题时,模型可能会尝试生成一个看似合理但实际上错误的答案。这种现象提醒我们,大语言模型在处理特定知识和逻辑推理方面仍有局限。

为了减少幻觉,我们可以通过明确指令,告诉模型在不确定时给出"不知道"的回答。这种方法能够显著降低模型生成错误信息的概率。同时,结合外部工具和知识库,例如使用Python进行数学计算,可以提高模型在特定任务上的准确性。

涌现与思考链条

大语言模型展示出的一些高级能力,如涌现(emergence)和思考链条(Chain of Thought),让研究人员感到惊讶。涌现指的是模型在训练过程中,随着参数规模的增加,突然展示出一些新的能力。例如,模型能够理解复杂的问题,并通过分解问题和逐步推理来生成答案。

思考链条则是模型在回答复杂问题时,展示出类似于人类思维的推理过程。例如,当问及"刘强东的太太的年龄的平方根是多少"时,模型能够通过分解问题,逐步得出答案。这种能力展示了大语言模型在语言理解和逻辑推理方面的潜力。

未来发展与应用

大语言模型在未来的发展中,可能会朝着以下几个方向努力:

1. 提高知识准确性:通过结合外部知识库和实时数据,提高模型在特定领域的知识准确性。例如,通过与互联网连接,实时获取最新信息,减少模型生成错误信息的概率。

2. 增强逻辑推理能力:通过改进模型结构和训练方法,提高模型的逻辑推理能力,使其在处理复杂问题时更加准确和可靠。

3. 多语言支持:进一步提高模型对多种语言的支持能力,增强其在全球范围内的应用价值。

4. 个性化应用:通过微调和定制化训练,使模型能够适应不同用户的需求,提供更加个性化和精准的服务。

大语言模型的出现标志着NLP领域的一个重要里程碑。尽管它们在语言生成和理解方面展示了强大的能力,但仍然面临一些挑战。通过持续的研究和改进,我们可以期待大语言模型在未来发挥更大的作用,推动人工智能技术的发展和应用。无论是在商业应用、教育领域还是日常生活中,大语言模型都有潜力带来深远的影响。随着技术的不断进步,我们有理由相信,未来的大语言模型将会更加智能、可靠,为人类社会带来更多的便利和创新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1884727.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IPIDEA代理IP助力高效数据采集

IPIDEA代理IP助力高效数据采集 文章目录 IPIDEA代理IP助力高效数据采集📑前言一、爬虫数据采集痛点二、代理IP解决爬虫痛点2.1 为什么可以2.2 选择代理IP的关键因素 三、IPIDEA海外IP代理的优势3.1 IPIDEA的显著优势3.2 IPIDEA的代理类型及应用 四、IPIDEA爬虫实战4…

复分析——第10章——Θ函数应用(E.M. Stein R. Shakarchi)

第10章 Θ函数的应用 (Applications of Theta Functions) The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers. Its history may be traced back to Diopha…

JS逆向技巧总结

总的来说,JavaScript 逆向可以分为三大部分:寻找入口、调试分析和模拟执行。下面分别进行介绍。 一,寻找入口 一个网站加载了很多 JavaScript 文件,那么怎么从这么多 JavaScript 里面找到关键的位置,那就是一个关键问…

Outlook发送大文件的问题是什么?怎么解决?

Outlook不仅是一款电子邮件客户端,还包括日历、任务、笔记、联系人等功能,同时与Microsoft Office套件中的其他应用程序(如Word、Excel、PowerPoint等)集成紧密,方便用户在不同应用程序之间切换,提高工作效…

计算机毕业设计Python+Spark股票基金推荐与预测系统 股票基金可视化 股票基金推荐系统 股票基金可视化系统 股票基金数据分析 股票基金爬虫大数据

目 录 摘 要 Abstract 第1章 前 言 1.1 项目的背景和意义 1.2 研究现状 1.3 项目的目标和范围 1.4 论文结构简介 第2章 技术与原理 2.1 开发原理 2.2 开发工具 2.3 关键技术 第3章 需求建模 3.1 系统可行性分析 3.2 功能需求分析 3.3 非功能性…

Kafka-服务端-副本同步-源码流程

杂 在0.9.0.0之前,Kafka提供了replica lag.max.messages 来控制follower副本最多落后leader副本的消息数量,follower 相对于leader 落后当超过这个数量的时候就判定该follower是失效的,就会踢出ISR,这里的指的是具体的LEO值。 对…

为Stable Diffusion换件新衣服

你是不是已经看腻Stable Diffusion默认的webui了,想要换件新衣服。Lobe Theme这个插件就可以帮助你。 首先,我们启动 SD,如果没有安装,可以参考https://mp.csdn.net/mp_blog/creation/editor/139196688。 然后找到扩展选项卡&…

网络安全--计算机网络安全概述

文章目录 网络信息系统安全的目标网络安全的分支举例P2DR模型信息安全模型访问控制的分类多级安全模型 网络信息系统安全的目标 保密性 保证用户信息的保密性,对于非公开的信息,用户无法访问并且无法进行非授权访问,举例子就是:防…

鸿蒙OS开发者高级学习第2课:自由流转(含习题答案)

自由流转两种形态:相继使用(跨端迁移);同时使用( 多端协同) 习题:

linux 用户、用户组操作

一、用户组操作 用户组(group)就是具有相同特征的用户(user)的集合体;比如有时我们要让多个用户具有相同的权限,比如查看、修改某一文件或执行某个命令,这时我们需要用户组,我们把用…

8种数据迁移工具

前言 最近有些小伙伴问我,ETL数据迁移工具该用哪些。 ETL(是Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业应用来说,我们经常会遇到各种数据的处理、转换、迁移的场景。 今天特地给大家汇总了一些目前…

Ubuntu 22.04 安装中文字体

笔者在用OpenCV4.9处理图片加水印时,中文乱码。原来是Ubuntu 22.04发行版缺少中文字体支持,因此,笔者就找资料安装了需要的中文字体,特此记录,以备后查。 1、打开终端: 2、更新软件包列表: su…

7基于SpringBoot的SSMP整合案例-表现层开发

目录 1.基于Restfu1进行表现层接口开发 1.1创建功能类 1.2基于Restful制作表现层接口 2.接收参数 2使用Apifox测试表现层接口功能 保存接口: 分页接口: 3.表现层一致性处理 3.1先创建一个工具类,用作后端返回格式统一类:…

图形编辑器基于Paper.js教程05:鼠标画矩形与正方形

优化矩形绘制:在Paper.js中有效管理鼠标事件 在图形应用开发中,准确和高效地处理用户输入,如鼠标事件,是提升用户体验的关键。本文通过一个使用Paper.js的示例,展示如何优化矩形绘制过程,特别是处理不同方…

【大模型】基于ChatGLM进行微调及应用 [更新中......]

文章目录 一、前言二、说明2.1 代码结构2.2 依赖包版本 三、启动对话演示3.1 命令行交互 cli_demo.py3.2 网页交互 web_demo.py 四、微调模型4.1 基于 P-Tuning v2 微调模型4.1.1 软件依赖4.1.2 下载数据集4.1.3 下载模型文件4.1.4 操作步骤 4.2 基于 Full Parameter 微调模型4…

大模型简介

大模型框架 大模型基于深度学习,利用大量数据和计算资源训练具有大量参数的神经网络模型。通过不断地调整模型参数,使得模型能够在各种任务中取得最佳表现。 通常说的大模型的“大”的特点体现在:参数数量庞大、训练数据量大、计算资源需求…

记一次EasyExcel的错误使用导致的频繁FullGC

记一次EasyExcel的错误使用导致的频繁FullGC 一、背景描述二、场景复现三、原因分析四、解决方案五、思考复盘 一、背景描述 繁忙的校招结束了,美好的大学四年也结束了,作者也有10个月没有更新了。拿到心仪的offer之后也开始了苦B的打工生活。 最近接到…

Python爬取豆瓣电影+数据可视化,爬虫教程!

1. 爬取数据 1.1 导入以下模块 import os import re import time import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent from openpyxl import Workbook, load_workbook1.2 获取每页电影链接 def getonepagelist(url,headers):try:r reque…

JAVA里的BigDecimal用法

public class BigDecimaldemo1 {public static void main(String[] args) {System.out.println(0.090.01);//为什么不是0.10呢?} }在使用float或者double类型的数据在进行数学运算的时候,很有可能会产生精度丢失问题。我们都知道计算机底层在进行运算的时候&#x…

SpringBoot中整合ONLYOFFICE在线编辑

SpringBoot整合OnlyOffice SpringBoot整合OnlyOffice实现在线编辑1. 搭建私有的OnlyOffice的服务2. SpringBoot进行交互2.1 环境2.2 我们的流程2.3 接口规划2.3.1 获取编辑器配置的接口2.3.2 文件下载地址2.3.3 文件下载地址 3. 总结4. 注意4.1 你的项目的地址一定一定要和only…