openmetadata1.3.1 自定义连接器 开发教程

news2025/1/11 2:25:51

openmetadata自定义连接器开发教程

一、开发通用自定义连接器教程

官网教程链接:

1.https://docs.open-metadata.org/v1.3.x/connectors/custom-connectors

2.https://github.com/open-metadata/openmetadata-demo/tree/main/custom-connector

(一)创建服务类型自定义连接器类

参考文档:https://docs.open-metadata.org/v1.3.x/sdk/python/build-connector/source#for-consumers-of-openmetadata-ingestion-to-define-custom-connectors-in-their-own-package-with-same-namespace

1.创建自定义连接器

示例:my_csv_connector.py

"""
自定义Database Service 从 CSV 文件中提取元数据
"""
import csv
import traceback

from pydantic import BaseModel, ValidationError, validator
from pathlib import Path
from typing import Iterable, Optional, List, Dict, Any

from metadata.ingestion.api.common import Entity
from metadata.ingestion.api.models import Either
from metadata.generated.schema.entity.services.ingestionPipelines.status import StackTraceError
from metadata.ingestion.api.steps import Source, InvalidSourceException
from metadata.generated.schema.entity.services.connections.metadata.openMetadataConnection import (
    OpenMetadataConnection,
)
from metadata.generated.schema.entity.services.connections.database.customDatabaseConnection import (
    CustomDatabaseConnection,
)
from metadata.generated.schema.entity.data.database import Database
from metadata.generated.schema.entity.data.databaseSchema import DatabaseSchema
from metadata.generated.schema.api.data.createDatabaseSchema import (
    CreateDatabaseSchemaRequest,
)
from metadata.generated.schema.api.data.createDatabase import CreateDatabaseRequest
from metadata.generated.schema.entity.services.databaseService import (
    DatabaseService,
)
from metadata.generated.schema.entity.data.table import (
    Column,
)
from metadata.generated.schema.metadataIngestion.workflow import (
    Source as WorkflowSource,
)
from metadata.generated.schema.api.data.createTable import CreateTableRequest
from metadata.ingestion.ometa.ometa_api import OpenMetadata
from metadata.utils.logger import ingestion_logger

logger = ingestion_logger()


class InvalidCsvConnectorException(Exception):
    """
    Sample data is not valid to be ingested
    """


class CsvModel(BaseModel):
    name: str
    column_names: List[str]
    column_types: List[str]

    @validator("column_names", "column_types", pre=True)
    def str_to_list(cls, value):
        """
        Suppose that the internal split is in ;
        """
        return value.split(";")


class CsvConnector(Source):
    """
    Custom connector to ingest Database metadata.

    We'll suppose that we can read metadata from a CSV
    with a custom database name from a business_unit connection option.
    """

    # 内置方法
    def __init__(self, config: WorkflowSource, metadata: OpenMetadata):
        self.config = config
        self.metadata = metadata
        # 获取配置信息
        self.service_connection = config.serviceConnection.__root__.config

        self.source_directory: str = (
            # 获取CSV文件路径
            self.service_connection.connectionOptions.__root__.get("source_directory")
        )
        if not self.source_directory:
            raise InvalidCsvConnectorException(
                "未获取到source_directory配置信息"
            )

        self.business_unit: str = (
            # 获取自定义的数据库名称
            self.service_connection.connectionOptions.__root__.get("business_unit")
        )
        if not self.business_unit:
            raise InvalidCsvConnectorException(
                "未获取到business_unit配置信息"
            )

        self.data: Optional[List[CsvModel]] = None

        super().__init__()

    # 内置函数
    @classmethod
    def create(
            cls, config_dict: dict, metadata_config: OpenMetadataConnection
    ) -> "CsvConnector":
        config: WorkflowSource = WorkflowSource.parse_obj(config_dict)
        connection: CustomDatabaseConnection = config.serviceConnection.__root__.config
        if not isinstance(connection, CustomDatabaseConnection):
            raise InvalidSourceException(
                f"Expected CustomDatabaseConnection, but got {connection}"
            )
        return cls(config, metadata_config)

    # 静态方法:按行读取
    @staticmethod
    def read_row_safe(row: Dict[str, Any]):
        try:
            return CsvModel.parse_obj(row)
        except ValidationError:
            logger.warning(f"Error parsing row {row}. Skipping it.")

    # 预处理:读取文件及数据
    def prepare(self):
        # Validate that the file exists
        source_data = Path(self.source_directory)
        if not source_data.exists():
            raise InvalidCsvConnectorException("Source Data path does not exist")

        try:
            with open(source_data, "r", encoding="utf-8") as file:
                reader = csv.DictReader(file)
                # 读取数据
                self.data = [self.read_row_safe(row) for row in reader]
        except Exception as exc:
            logger.error("Unknown error reading the source file")
            raise exc

    def yield_create_request_database_service(self):
        yield Either(
            # 串讲元数据读取服务
            right=self.metadata.get_create_service_from_source(
                entity=DatabaseService, config=self.config
            )
        )

    # 业务原数据库名处理方法
    def yield_business_unit_db(self):
        # 选择我们刚刚创建的服务(如果不是UI)
        # 获取提取服务对象
        service_entity: DatabaseService = self.metadata.get_by_name(
            entity=DatabaseService, fqn=self.config.serviceName
        )
        yield Either(
            right=CreateDatabaseRequest(
                name=self.business_unit,
                service=service_entity.fullyQualifiedName,
            )
        )

    # chems处理方法
    def yield_default_schema(self):
        # Pick up the service we just created (if not UI)
        database_entity: Database = self.metadata.get_by_name(
            entity=Database, fqn=f"{self.config.serviceName}.{self.business_unit}"
        )

        yield Either(
            right=CreateDatabaseSchemaRequest(
                name="default",
                database=database_entity.fullyQualifiedName,
            )
        )

    # 业务元数据处理方法
    def yield_data(self):
        """
        Iterate over the data list to create tables
        """
        database_schema: DatabaseSchema = self.metadata.get_by_name(
            entity=DatabaseSchema,
            fqn=f"{self.config.serviceName}.{self.business_unit}.default",
        )
        # 异常处理
        # 假设我们有一个要跟踪的故障
        # try:
        #     1/0
        # except Exception:
        #     yield Either(
        #         left=StackTraceError(
        #             name="My Error",
        #             error="Demoing one error",
        #             stackTrace=traceback.format_exc(),
        #         )
        #     )
        # 解析csv元数据信息(获取列名和类型)
        for row in self.data:
            yield Either(
                right=CreateTableRequest(
                    name=row.name,
                    databaseSchema=database_schema.fullyQualifiedName,
                    columns=[
                        Column(
                            name=model_col[0],
                            dataType=model_col[1],
                        )
                        for model_col in zip(row.column_names, row.column_types)
                    ],
                )
            )

    # 迭代器:元数据迭代返回
    def _iter(self) -> Iterable[Entity]:
        # 数据库元数据信息存储
        yield from self.yield_create_request_database_service()
        # 业务源数据库
        yield from self.yield_business_unit_db()
        # 业务schema
        yield from self.yield_default_schema()
        # 业务数据
        yield from self.yield_data()

    # 测试数据库连接
    def test_connection(self) -> None:
        pass

    # 连接关闭
    def close(self):
        pass

(二)将自定义连接器方法打包编译进ingestion镜像

项目目录:

image-20240701153616535

Dockerfile:

FROM openmetadata/ingestion:1.3.1

# Let's use the same workdir as the ingestion image
WORKDIR ingestion
USER airflow

# Install our custom connector
COPY connector connector
COPY setup.py .
COPY sample.csv .
#COPY person_info.proto .
RUN pip install --no-deps .

编译服务镜像

docker build -t om-ingestion:build -f Dockerfile .

(三)部署新版ingestion服务()

docker-compose up -d

docker-compose-ingestion.yml

version: "3.9"
volumes:
  ingestion-volume-dag-airflow:
  ingestion-volume-dags:
  ingestion-volume-tmp:
  es-data:
services:  
  ingestion:
    container_name: om_ingestion
    image: om-ingestion:build
    environment:
      AIRFLOW__API__AUTH_BACKENDS: "airflow.api.auth.backend.basic_auth,airflow.api.auth.backend.session"
      AIRFLOW__CORE__EXECUTOR: LocalExecutor
      AIRFLOW__OPENMETADATA_AIRFLOW_APIS__DAG_GENERATED_CONFIGS: "/opt/airflow/dag_generated_configs"
      DB_SCHEME: ${AIRFLOW_DB_SCHEME:-postgresql+psycopg2}
      DB_HOST: ${AIRFLOW_DB_HOST:-host.docker.internal}
      DB_PORT: ${AIRFLOW_DB_PORT:-5432}
      AIRFLOW_DB: ${AIRFLOW_DB:-airflow_db}
      DB_USER: ${AIRFLOW_DB_USER:-airflow_user}
      DB_PASSWORD: ${AIRFLOW_DB_PASSWORD:-airflow_pass}

      # extra connection-string properties for the database
      # EXAMPLE
      # require SSL (only for Postgres)
      # properties: "?sslmode=require"
      DB_PROPERTIES: ${AIRFLOW_DB_PROPERTIES:-}
      # To test the lineage backend
      # AIRFLOW__LINEAGE__BACKEND: airflow_provider_openmetadata.lineage.backend.OpenMetadataLineageBackend
      # AIRFLOW__LINEAGE__AIRFLOW_SERVICE_NAME: local_airflow
      AIRFLOW__LINEAGE__OPENMETADATA_API_ENDPOINT: http://host.docker.internal:8585/api
      AIRFLOW__LINEAGE__JWT_TOKEN: eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJvcGVuLW1ldGFkYXRhLm9yZyIsInN1YiI6ImluZ2VzdGlvbi1ib3QiLCJlbWFpbCI6ImluZ2VzdGlvbi1ib3RAb3Blbm1ldGFkYXRhLm9yZyIsImlzQm90Ijp0cnVlLCJ0b2tlblR5cGUiOiJCT1QiLCJpYXQiOjE3MDk3MDkyNDMsImV4cCI6bnVsbH0.U7XIYZjJAmJ-p3WTy4rTGGSzUxZeNpjOsHzrWRz7n-zAl-GZvznZWMKX5nSX_KwRHAK3UYuO1UX2-ZbeZxdpzhyumycNFyWzwMs8G6iEGoaM6doGhqCgHileco8wcAoaTXKHTnwa80ddWHt4dqZmikP7cIhLg9etKAepQNQibefewHbaLOoCrFyo9BqFeZzNaVBo1rogNtslWaDO6Wnk_rx0jxRLTy57Thq7R7YS_nZd-JVfYf72BEFHJ_WDZym4k-dusV0PWGzMPYIXq3s1KbpPBt_tUSz4cUrXbLuI5-ZsOWIvUhsLeHJDU-35-RymylhMrQ92kZjsy7v2nl6apQ
    entrypoint: /bin/bash
    command:
      - "/opt/airflow/ingestion_dependency.sh"
    expose:
      - 8080
    ports:
      - "8080:8080"
    networks:
      - app_net_ingestion
    volumes:
      - ingestion-volume-dag-airflow:/opt/airflow/dag_generated_configs
      - ingestion-volume-dags:/opt/airflow/dags
      - ingestion-volume-tmp:/tmp

networks:
  app_net_ingestion:
    ipam:
      driver: default
      config:
        - subnet: "172.16.240.0/24"

(四)根据服务类型选择对应类型的custom服务创建采集器测试

image-20240701160552070

点击保存添加元数据提取器:

image-20240701160623658

image-20240701160654370

二、开发内置连接器教程(Streamsets)

官网教程链接:https://docs.open-metadata.org/v1.3.x/developers/contribute/developing-a-new-connector

(一)定义连接器class类json模版(streamSetsConnection.json)

目录openmetadata-spec/src/main/resources/json/schema/entity/services/connections/pipeline/streamSetsConnection.json

{
  "$id": "https://open-metadata.org/schema/entity/services/connections/pipeline/streamSetsConnection.json",
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "StreamSetsConnection",
  "description": "StreamSets Metadata Pipeline Connection Config",
  "type": "object",
  "javaType": "org.openmetadata.schema.services.connections.pipeline.StreamSetsConnection",
  "definitions": {
    "StreamSetsType": {
      "description": "Service type.",
      "type": "string",
      "enum": ["StreamSets"],
      "default": "StreamSets"
    },
    "basicAuthentication": {
      "title": "Username Authentication",
      "description": "Login username",
      "type":"object",
      "properties": {
        "username": {
          "title": "Username",
          "description": "StreamSets user to authenticate to the API.",
          "type": "string"
        }
      },
      "additionalProperties": false
    }
  },
  "properties": {
    "type": {
      "title": "Service Type",
      "description": "Service Type",
      "$ref": "#/definitions/StreamSetsType",
      "default": "StreamSets"
    },
    "hostPort": {
      "expose": true,
      "title": "Host And Port",
      "description": "Pipeline Service Management/UI URI.",
      "type": "string",
      "format": "uri"
    },
    "streamSetsConfig": {
      "title": "StreamSets Credentials Configuration",
      "description": "We support username authentication",
      "oneOf": [
        {
          "$ref": "#/definitions/basicAuthentication"
        }
      ]
    },
    "supportsMetadataExtraction": {
      "title": "Supports Metadata Extraction",
      "$ref": "../connectionBasicType.json#/definitions/supportsMetadataExtraction"
    }
  },
  "additionalProperties": false,
  "required": ["hostPort", "streamSetsConfig"]
}

(二)开发采集器源码:

目录:ingestion/src/metadata/ingestion/source/pipeline/streamsets/*

image-20240701162822027

1.streamsets连接客户端(client.py)

import logging
import traceback
from typing import Any, Iterable, Optional

import requests
from requests import HTTPError
from requests.auth import HTTPBasicAuth

# 设置日志记录器
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

REQUESTS_TIMEOUT = 60 * 5


def clean_uri(uri: str) -> str:
    """清理URI,确保它以HTTP或HTTPS开头"""
    if not uri.startswith(("http://", "https://")):
        return "http://" + uri
    return uri


class StreamSetsClient:
    """
    在StreamSets Data Collector REST API之上的包装器
    """

    def __init__(
            self,
            host_port: str,
            username: Optional[str] = None,
            password: Optional[str] = None,
            verify: bool = False,
    ):
        self.api_endpoint = clean_uri(host_port) + "/rest"
        self.username = username
        self.password = password
        self.verify = verify
        self.headers = {"Content-Type": "application/json"}

    def get(self, path: str) -> Optional[Any]:
        """
        GET方法包装器
        """
        try:
            res = requests.get(
                f"{self.api_endpoint}/{path}",
                verify=self.verify,
                headers=self.headers,
                timeout=REQUESTS_TIMEOUT,
                auth=HTTPBasicAuth(self.username, self.password),
            )
            res.raise_for_status()
            return res.json()
        except HTTPError as err:
            logger.warning(f"Connection error calling the StreamSets API - {err}")
            raise err

        except ValueError as err:
            logger.warning(f"Cannot pick up the JSON from API response - {err}")
            raise err

        except Exception as err:
            logger.warning(f"Unknown error calling StreamSets API - {err}")
            raise err

    def list_pipelines(self) -> Iterable[dict]:
        """
        List all pipelines
        """
        try:
            return self.get("v1/pipelines")
        except Exception as err:
            logger.error(traceback.format_exc())
            raise err

    def get_pipeline_details(self, pipeline_id: str) -> dict:
        """
        Get a specific pipeline by ID
        """
        return self.get(f"v1/pipeline/{pipeline_id}?rev=0&get=pipeline")

    def test_list_pipeline_detail(self) -> Iterable[dict]:
        """
        Test API access for listing pipelines
        """
        return self.list_pipelines()

2.连接器和测试连接器(connection.py)

"""
源连接处理程序
"""
from typing import Optional

from metadata.generated.schema.entity.automations.workflow import (
    Workflow as AutomationWorkflow,
)
from metadata.generated.schema.entity.services.connections.pipeline.streamSetsConnection import (
    BasicAuthentication,
    StreamSetsConnection,
)
from metadata.ingestion.connections.test_connections import test_connection_steps
from metadata.ingestion.ometa.ometa_api import OpenMetadata
from metadata.ingestion.source.pipeline.streamsets.client import StreamSetsClient


def get_connection(connection: StreamSetsConnection) -> StreamSetsClient:
    """
    Create connection
    """
    if isinstance(connection.streamSetsConfig, BasicAuthentication):
        return StreamSetsClient(
            host_port=connection.hostPort,
            username=connection.streamSetsConfig.username,
            password="95bd7977208bc935cac3656f4a9eea3a",
            verify=False,
        )


def test_connection(
        metadata: OpenMetadata,
        client: StreamSetsClient,
        service_connection: StreamSetsConnection,
        automation_workflow: Optional[AutomationWorkflow] = None,
) -> None:
    """
    元数据工作流或自动化工作流期间
    测试连接。这可以作为一部分执行
    """

    def custom_executor():
        list(client.list_pipelines())

    test_fn = {"GetPipelines": custom_executor}

    test_connection_steps(
        metadata=metadata,
        test_fn=test_fn,
        service_type=service_connection.type.value,
        automation_workflow=automation_workflow,
    )

3.元数据提取器(metadata.py)

"""
提取StreamSets 源的元数据 
"""
import traceback
from typing import Iterable, List, Optional, Any

from metadata.generated.schema.entity.services.ingestionPipelines.status import StackTraceError
from pydantic import BaseModel, ValidationError

from metadata.generated.schema.api.data.createPipeline import CreatePipelineRequest
from metadata.generated.schema.api.lineage.addLineage import AddLineageRequest
from metadata.generated.schema.entity.data.pipeline import Task
from metadata.generated.schema.entity.services.connections.pipeline.streamSetsConnection import (
    StreamSetsConnection,
)
from metadata.generated.schema.metadataIngestion.workflow import (
    Source as WorkflowSource,
)
from metadata.ingestion.api.models import Either
from metadata.ingestion.api.steps import InvalidSourceException
from metadata.ingestion.models.pipeline_status import OMetaPipelineStatus
from metadata.ingestion.ometa.ometa_api import OpenMetadata
from metadata.ingestion.source.pipeline.pipeline_service import PipelineServiceSource
from metadata.utils.helpers import clean_uri
from metadata.utils.logger import ingestion_logger

logger = ingestion_logger()


class StagesDetails(BaseModel):
    instanceName: str
    label:str
    stageType: str
    stageName: str
    description: str
    inputLanes: List[str]
    outputLanes: List[str]
    downstream_task_names: set[str] = set()

class StreamSetsPipelineDetails(BaseModel):
    """
    Defines the necessary StreamSets information
    """
    uuid: str
    pipelineId: str
    title: str
    name: str
    created: int
    creator: str
    description: str


class StreamsetsSource(PipelineServiceSource):
    """
    执行必要的方法,从 Airflow 的元数据数据库中提取管道元数据
    """

    @classmethod
    def create(cls, config_dict: dict, metadata: OpenMetadata):
        logger.info("create..........")
        config: WorkflowSource = WorkflowSource.parse_obj(config_dict)
        logger.info(f"WorkflowSource: {config}")
        connection: StreamSetsConnection = config.serviceConnection.__root__.config
        logger.info(f"StreamSetsConnection: {connection}")
        if not isinstance(connection, StreamSetsConnection):
            raise InvalidSourceException(
                f"Expected StreamSetsConnection, but got {connection}"
            )
        return cls(config, metadata)

    def yield_pipeline(
            self, pipeline_details: StreamSetsPipelineDetails
    ) -> Iterable[Either[CreatePipelineRequest]]:
        logger.info("yield_pipeline.......")
        try:
            connection_url = None
            if self.service_connection.hostPort:
                connection_url = (
                    f"{clean_uri(self.service_connection.hostPort)}/rest/v1/pipelines"
                )
            logger.info(f"pipeline_details:{pipeline_details}")
            logger.info(f"connection_url:{connection_url}")
            pipeline_request = CreatePipelineRequest(
                name=pipeline_details.name,
                displayName=pipeline_details.title,
                sourceUrl=f"{clean_uri(self.service_connection.hostPort)}/collector/pipeline/{pipeline_details.pipelineId}",
                tasks=self._get_tasks_from_details(pipeline_details),
                service=self.context.pipeline_service,
            )
            yield Either(right=pipeline_request)
            self.register_record(pipeline_request=pipeline_request)
        except TypeError as err:
            self.context.task_names = set()
            yield Either(
                left=StackTraceError(
                    name=pipeline_details.dag_id,
                    error=(
                        f"Error building DAG information from {pipeline_details}. There might be Airflow version"
                        f" incompatibilities - {err}"
                    ),
                    stackTrace=traceback.format_exc(),
                )
            )
        except ValidationError as err:
            self.context.task_names = set()
            yield Either(
                left=StackTraceError(
                    name=pipeline_details.dag_id,
                    error=f"Error building pydantic model for {pipeline_details} - {err}",
                    stackTrace=traceback.format_exc(),
                )
            )

        except Exception as err:
            self.context.task_names = set()
            yield Either(
                left=StackTraceError(
                    name=pipeline_details.dag_id,
                    error=f"Wild error ingesting pipeline {pipeline_details} - {err}",
                    stackTrace=traceback.format_exc(),
                )
            )

    # 获取解析管道详情
    def _get_tasks_from_details(
            self, pipeline_details: StreamSetsPipelineDetails
    ) -> Optional[List[Task]]:
        logger.info("_get_tasks_from_details.......")
        logger.info(f"StreamSetsPipelineDetails:{pipeline_details}")
        try:
            stages = self.get_stages_by_pipline(pipeline_details)
            return [
                Task(
                    name=stage.instanceName,
                    displayName=stage.label,
                    sourceUrl=f"{clean_uri(self.service_connection.hostPort)}/collector/pipeline/{pipeline_details.pipelineId}",
                    taskType=stage.stageType,
                    description=stage.description,
                    downstreamTasks=list(stage.downstream_task_names)
                    if stage.downstream_task_names
                    else [],
                )
                for stage in stages
            ]
        except Exception as err:
            logger.debug(traceback.format_exc())
            logger.warning(
                f"Wild error encountered when trying to get tasks from Pipeline Details {pipeline_details} - {err}."
            )
        return None

    def yield_pipeline_lineage_details(
            self, pipeline_details: StreamSetsPipelineDetails
    ) -> Iterable[Either[AddLineageRequest]]:
        logger.info("yield_pipeline_lineage_details..........")

        """
        将连接转换为管道实体
        :param pipeline_details: 来自  StreamSets的pipeline_details对象
        return:使用任务创建管道请求
        """
        pass

    def get_pipelines_list(
            self
    ) -> Optional[List[StreamSetsPipelineDetails]]:
        logger.info("get_pipelines_list..........")
        """Get List of all pipelines"""
        if self.connection.list_pipelines() is not None:
            for list_pipeline in self.connection.list_pipelines():
                logger.info(f"pipeline:{list_pipeline}")
                try:
                    yield StreamSetsPipelineDetails(
                        uuid=list_pipeline.get("uuid"),
                        pipelineId=list_pipeline.get("pipelineId"),
                        title=list_pipeline.get("title"),
                        name=list_pipeline.get("name"),
                        created=list_pipeline.get("created"),
                        creator=list_pipeline.get("creator"),
                        description=list_pipeline.get("description"),
                    )
                except (ValueError, KeyError, ValidationError) as err:
                    logger.debug(traceback.format_exc())
                    logger.warning(
                        f"Cannot create StreamSetsPipelineDetails from {list_pipeline} - {err}"
                    )
                except Exception as err:
                    logger.debug(traceback.format_exc())
                    logger.warning(
                        f"Wild error encountered when trying to get pipelines from Process Group {list_pipeline} - {err}."
                    )
        else:
            return None

    # 获取上下关联关系
    def get_stages_lane(
            self, stages: Optional[List[StagesDetails]]
    ) -> {}:
        logger.info("get_stages_lane......")
        input_lane_to_stage_map = {}
        for stage in stages:
            logger.info(f"stage_info:{stage}")
            for input_lane in stage.get("inputLanes", []):
                try:
                    if input_lane_to_stage_map.get(input_lane) is None:
                        input_lane_to_stage_map[input_lane] = set()
                        input_lane_to_stage_map[input_lane].add(stage.get("instanceName"))
                    else:
                        input_lane_to_stage_map[input_lane].add(stage.get("instanceName"))
                except Exception as err:
                    logger.debug(traceback.format_exc())
                    logger.warning(
                        f"Wild error encountered when trying to get stages from Pipeline Details {stages} - {err}.")
        logger.info(f"input_lane_to_stage_map:{input_lane_to_stage_map}")
        return input_lane_to_stage_map

    def get_stages_by_pipline(
            self, pipeline_details: StreamSetsPipelineDetails
    ) -> Optional[List[StagesDetails]]:
        logger.info("get_stages_by_pipline")
        pipeline_detail = self.connection.get_pipeline_details(pipeline_details.pipelineId)
        stages = []
        if pipeline_detail.get("stages"):
            stages = pipeline_detail.get("stages")
        input_lane_to_stage_map = self.get_stages_lane(stages)
        for stage in stages:
            logger.info(f"stage:{stage}")
            try:
                input_lanes = stage.get("inputLanes", [])
                output_lanes = stage.get("outputLanes", [])
                downstream_stage_names = set()
                for output_lane in stage.get("outputLanes", []):
                    if output_lane in input_lane_to_stage_map.keys():
                        for down_stage in input_lane_to_stage_map.get(output_lane, []):
                            downstream_stage_names.add(down_stage)
                yield StagesDetails(
                    instanceName=stage.get("instanceName"),
                    label=stage["uiInfo"].get("label"),
                    stageType=stage["uiInfo"].get("stageType"),
                    stageName=stage.get("stageName"),
                    description=stage["uiInfo"].get("description"),
                    inputLanes=input_lanes,
                    outputLanes=output_lanes,
                    downstream_task_names=downstream_stage_names
                )
            except (ValueError, KeyError, ValidationError) as err:
                logger.debug(traceback.format_exc())
                logger.warning(
                    f"Cannot create StagesDetails from {stage} - {err}"
                )
            except Exception as err:
                logger.debug(traceback.format_exc())
                logger.warning(
                    f"Wild error encountered when trying to get pipelines from Process Group {stage} - {err}."
                )

    def get_pipeline_name(
            self, pipeline_details: StreamSetsPipelineDetails
    ) -> str:
        return pipeline_details.name

    def yield_pipeline_status(
            self, pipeline_details: StreamSetsPipelineDetails
    ) -> Iterable[Either[OMetaPipelineStatus]]:
        pass

(三)修改前端ui源码,添加连接器对象

目录:openmetadata-ui/src/main/resources/ui/src/utils/PipelineServiceUtils.ts

/*
 *  Copyright 2022 Collate.
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *  http://www.apache.org/licenses/LICENSE-2.0
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

import { cloneDeep } from 'lodash';
import { COMMON_UI_SCHEMA } from '../constants/Services.constant';
import { PipelineServiceType } from '../generated/entity/services/pipelineService';
import airbyteConnection from '../jsons/connectionSchemas/connections/pipeline/airbyteConnection.json';
import airflowConnection from '../jsons/connectionSchemas/connections/pipeline/airflowConnection.json';
import customPipelineConnection from '../jsons/connectionSchemas/connections/pipeline/customPipelineConnection.json';
import dagsterConnection from '../jsons/connectionSchemas/connections/pipeline/dagsterConnection.json';
import databricksPipelineConnection from '../jsons/connectionSchemas/connections/pipeline/databricksPipelineConnection.json';
import domoPipelineConnection from '../jsons/connectionSchemas/connections/pipeline/domoPipelineConnection.json';
import fivetranConnection from '../jsons/connectionSchemas/connections/pipeline/fivetranConnection.json';
import gluePipelineConnection from '../jsons/connectionSchemas/connections/pipeline/gluePipelineConnection.json';
import nifiConnection from '../jsons/connectionSchemas/connections/pipeline/nifiConnection.json';
import splineConnection from '../jsons/connectionSchemas/connections/pipeline/splineConnection.json';
import streamSetsConnection from '../jsons/connectionSchemas/connections/pipeline/streamSetsConnection.json';

export const getPipelineConfig = (type: PipelineServiceType) => {
  let schema = {};
  const uiSchema = { ...COMMON_UI_SCHEMA };
  switch (type) {
    case PipelineServiceType.Airbyte: {
      schema = airbyteConnection;

      break;
    }

    case PipelineServiceType.Airflow: {
      schema = airflowConnection;

      break;
    }
    case PipelineServiceType.GluePipeline: {
      schema = gluePipelineConnection;

      break;
    }
    case PipelineServiceType.Fivetran: {
      schema = fivetranConnection;

      break;
    }
    case PipelineServiceType.Dagster: {
      schema = dagsterConnection;

      break;
    }
    case PipelineServiceType.Nifi: {
      schema = nifiConnection;

      break;
    }
    case PipelineServiceType.StreamSets: {
      schema = streamSetsConnection;

      break;
    }
    case PipelineServiceType.DomoPipeline: {
      schema = domoPipelineConnection;

      break;
    }
    case PipelineServiceType.CustomPipeline: {
      schema = customPipelineConnection;

      break;
    }
    case PipelineServiceType.DatabricksPipeline: {
      schema = databricksPipelineConnection;

      break;
    }
    case PipelineServiceType.Spline: {
      schema = splineConnection;

      break;
    }

    default:
      break;
  }

  return cloneDeep({ schema, uiSchema });
};

(四)前端ui源码,添加MD说明文档

路径:openmetadata-ui/src/main/resources/ui/public/locales/en-US/Pipeline/StreamSets.md

# StreamSets
在本节中,我们将提供使用 StreamSets 连接器的指南和参考。

## 要求
系统 支持 StreamSets 连接器的 1 种连接类型:
- **基本认证**:使用用户名对 StreamSets 进行登陆。

您可以在 [docs](https://docs.open-metadata.org/connectors/pipeline/StreamSets) 中找到有关 StreamSets 连接器的详细信息。

## 连接详细信息
$$section
### Host and Port $(id="hostPort")
管道服务管理 URI。这应指定为格式为"scheme://hostname:port"的 URI 字符串。例如,“http://localhost:8443”、“http://host.docker.internal:8443”。
$$

$$section
### StreamSets Config $(id="StreamSetsConfig")
OpenMetadata 支持基本身份验证(用户名/密码身份验证。有关详细信息,请参阅要求部分。
$$

$$section
### Username $(id="username")
用于连接到 StreamSets 的用户名。此用户应该能够向 StreamSets API 发送请求并访问“资源”终结点。
$$

(五)创建 Java ClassConverter(可选)

(六)构建dockefile重新构建镜像

server服务Dockerfile

# Build stage
FROM alpine:3.19 AS build

COPY openmetadata-dist/target/openmetadata-*.tar.gz /
#COPY docker/openmetadata-start.sh /

RUN mkdir -p /opt/openmetadata && \
    tar zxvf openmetadata-*.tar.gz -C /opt/openmetadata --strip-components 1 && \
    rm openmetadata-*.tar.gz

# Final stage
FROM alpine:3.19

EXPOSE 8585

RUN adduser -D openmetadata && \
    apk update && \
    apk upgrade && \
    apk add --update --no-cache bash openjdk17-jre tzdata
ENV TZ=Asia/Shanghai

COPY --chown=openmetadata:openmetadata --from=build /opt/openmetadata /opt/openmetadata
COPY --chmod=755 docker/openmetadata-start.sh /

USER openmetadata

WORKDIR /opt/openmetadata
ENTRYPOINT [ "/bin/bash" ]
CMD ["/openmetadata-start.sh"]

ingestion服务Dockerfile

路径:ingestion/Dockerfile

FROM apache/airflow:2.7.3-python3.10

#FROM docker-compose-ingestion-ingestion:latest
USER root
RUN curl -sS https://packages.microsoft.com/keys/microsoft.asc | apt-key add -
RUN curl -sS https://packages.microsoft.com/config/debian/11/prod.list > /etc/apt/sources.list.d/mssql-release.list
# Install Dependencies (listed in alphabetical order)
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
    && apt-get -qq install -y \
    tzdata \
    alien \
    build-essential \
    default-libmysqlclient-dev \
    freetds-bin \
    freetds-dev \
    gcc \
    gnupg \
    libaio1 \
    libevent-dev \
    libffi-dev \
    libpq-dev \
    librdkafka-dev \
    libsasl2-dev \
    libsasl2-2 \
    libsasl2-modules \
    libsasl2-modules-gssapi-mit \
    libssl-dev \
    libxml2 \
    libkrb5-dev \
    openjdk-11-jre \
    openssl \
    postgresql \
    postgresql-contrib \
    tdsodbc \
    unixodbc \
    unixodbc-dev \
    unzip \
    vim \
    git \
    wget --no-install-recommends \
    # Accept MSSQL ODBC License
    && ACCEPT_EULA=Y apt-get install -y msodbcsql18 \
    && rm -rf /var/lib/apt/lists/*

RUN if [[ $(uname -m) == "arm64" || $(uname -m) == "aarch64" ]]; \
 then \
 wget -q https://download.oracle.com/otn_software/linux/instantclient/191000/instantclient-basic-linux.arm64-19.10.0.0.0dbru.zip -O /oracle-instantclient.zip && \
 unzip -qq -d /instantclient -j /oracle-instantclient.zip && rm -f /oracle-instantclient.zip; \
 else \
 wget -q https://download.oracle.com/otn_software/linux/instantclient/1917000/instantclient-basic-linux.x64-19.17.0.0.0dbru.zip -O /oracle-instantclient.zip && \
 unzip -qq -d /instantclient -j /oracle-instantclient.zip && rm -f /oracle-instantclient.zip; \
 fi

ENV LD_LIBRARY_PATH=/instantclient

# Security patches for base image
# monitor no fixed version for
#    https://security.snyk.io/vuln/SNYK-DEBIAN11-LIBTASN16-3061097
#    https://security.snyk.io/vuln/SNYK-DEBIAN11-MARIADB105-2940589
#    https://security.snyk.io/vuln/SNYK-DEBIAN11-BIND9-3027852
#    https://security.snyk.io/vuln/SNYK-DEBIAN11-EXPAT-3023031 we are already installed the latest
RUN echo "deb http://deb.debian.org/debian bullseye-backports main" > /etc/apt/sources.list.d/backports.list
RUN apt-get -qq update \
    && apt-get -qq install -t bullseye-backports -y \
    curl \
    libpcre2-8-0 \
    postgresql-common \
    expat \
    bind9

# Required for Starting Ingestion Container in Docker Compose
# Provide Execute Permissions to shell script
COPY --chown=airflow:0 --chmod=775 ingestion/ingestion_dependency.sh /opt/airflow
# Required for Ingesting Sample Data
COPY --chown=airflow:0 --chmod=775 ingestion /home/airflow/ingestion

COPY --chown=airflow:0 --chmod=775 openmetadata-airflow-apis /home/airflow/openmetadata-airflow-apis


# Required for Airflow DAGs of Sample Data
#COPY --chown=airflow:0 ingestion/examples/airflow/dags /opt/airflow/dags

USER airflow
ARG AIRFLOW_CONSTRAINTS_LOCATION="https://raw.githubusercontent.com/apache/airflow/constraints-2.7.3/constraints-3.10.txt"
ENV TZ=Asia/Shanghai

# Disable pip cache dir
# https://pip.pypa.io/en/stable/topics/caching/#avoiding-caching
ENV PIP_NO_CACHE_DIR=1
# Make pip silent
ENV PIP_QUIET=1

RUN pip install --upgrade pip

WORKDIR /home/airflow/openmetadata-airflow-apis
RUN pip install "."

WORKDIR /home/airflow/ingestion


# 提供要安装的引入依赖项的参数。默认为全部提供要安装的引入依赖项的参数。默认为全部
ARG INGESTION_DEPENDENCY="all"
RUN pip install ".[${INGESTION_DEPENDENCY}]"

# Temporary workaround for https://github.com/open-metadata/OpenMetadata/issues/9593
RUN echo "Image built for $(uname -m)"
RUN if [[ $(uname -m) != "aarch64" ]]; \
 then \
 pip install "ibm-db-sa~=0.4"; \
 fi

# bump python-daemon for https://github.com/apache/airflow/pull/29916
RUN pip install "python-daemon>=3.0.0"
# remove all airflow providers except for docker and cncf kubernetes
RUN pip freeze | grep "apache-airflow-providers" | grep --invert-match -E "docker|http|cncf" | xargs pip uninstall -y
# Uninstalling psycopg2-binary and installing psycopg2 instead 
# because the psycopg2-binary generates a architecture specific error 
# while authenticating connection with the airflow, psycopg2 solves this error
RUN pip uninstall psycopg2-binary -y
RUN pip install psycopg2 mysqlclient==2.1.1
# Make required folders for openmetadata-airflow-apis
RUN mkdir -p /opt/airflow/dag_generated_configs

EXPOSE 8080
# This is required as it's responsible to create airflow.cfg file
RUN airflow db init && rm -f /opt/airflow/airflow.db

(七)构建服务镜像

根目录下执行构建server:

docker build -t om-server:build -f docker/development/Dockerfile .

根目录下执行构建ingestion:

docker build -t om-ingestion:build -f ingestion/Dockerfile .

(八)部署新版服务

docker-compose -f docker/development/docker-compose-postgres.yml up -d

(九)访问服务,创建streamsets元数据采集

image-20240701165027755

image-20240701165054548

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1884274.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

本周波动预警!7月将一路上涨,牛市“复苏“?低于6万美元的比特币,是熊市陷阱吗?

比特币在第三季度伊始发出了一些积极信号。随着上周末的涨势,BTC/USD最高一度达到63818美元,这让人对比特币能否重拾牛市信心满怀希望。不过,在冲破关键阻力位64000美元之前,市场参与者仍保持谨慎态度。比特币要想维系开头的牛市态…

掌握React与TypeScript:从零开始绘制中国地图

最近我需要使用reactts绘制一个界面,里面需要以中国地图的形式展示区块链从2019-2024年这五年的备案以及注销情况,所以研究了一下这方面的工作,初步有了一些成果,所以现在做一些分享,希望对大家有帮助! 在这…

使用Qt制作一个简单的界面

1、创建工程 步骤一: 步骤二: 步骤三: 选择 build system,有qmake、CMake 和 Qbs 三个选项。 CMake 很常用,功能也很强大,许多知名的项目都是用它,比如 OpenCV 和 VTK,但它的语法繁…

heic格式转化jpg如何操作?heic转jpg,分享6款图片转化器!

随着苹果iOS 11系统的推出,HEIC格式作为一种新的图片格式逐渐走进大众视野,heic格式在保证照片质量的同时,能显著减少系统存储空间的占用。然而,这也给非苹果用户带来了一些困扰,因为HEIC格式的图片在Windows系统上并不…

深入理解C# log4Net日志框架:功能、使用方法与性能优势

文章目录 1、log4Net的主要特性2、log4Net框架详解配置日志级别 3、log4Net的使用示例4、性能优化与对比5、总结与展望 在软件开发过程中,日志记录是一个不可或缺的功能。它可以帮助开发者追踪错误、监控应用程序性能,以及进行调试。在C#生态系统中&…

探秘 Django 专业之道

一、Django项目开发 1.web框架底层 1.1 网络通信 注意:局域网 个人一般写程序,想要让别人访问:阿里云、腾讯云。 去云平台租服务器(含公网IP)程序放在云服务器 先以局域网为例 我的电脑【服务端】 import sock…

无法访问指向的web服务器(或虚拟主机)的目录,请检查网络设置

微信公众平台,进行业务域名、JS接口安全域名、网页授权域名配置时,遇到的问题中有:无法访问指向的web服务器(或虚拟主机)的目录,请检查网络设置,这里简单记录一下处理过程。 关于这个问题首先保证下载…

基于PHP技术的校园论坛设计的设计与实现08586

基于PHP技术的校园论坛设计的设计与实现 摘 要 本项目旨在基于PHP技术设计与实现一个校园论坛系统,以提供一个功能丰富、用户友好的交流平台。该论坛系统将包括用户注册与登录、帖子发布与回复、个人信息管理等基本功能,并结合社交化特点,增强…

2023软考中级《软件设计师》(备考冲刺版) | 数据库系统

目录 1.数据库的基本概念 1.1 数据库体系结构 1.2 三级模式结构 1.3 数据仓库 2.数据库设计过程 2.1 概念结构设计 2.1.1 概念设计过程 2.1.2 E-R图 2.2 逻辑结构设计 2.2.1 关系模式相关概念 2.2.2 E-R图转关系模式(涉及下午题) 2.2.3 关系…

SysML与MBSE的关系

SysML与MBSE的关系 对于任何基于模型的系统工程 (MBSE) 方法,推荐的最佳实践是基于模型的语言、基于模型的工具、基于模型的流程和基于模型的架构框架的协同应用,如下图所示 系统架构四元组 图。经过十年将SysML应用于棘手的系统…

海思NNIE部署yolov5-shufflenet

1.简要说明 由于NNIE上transpose支持的顺序是固定的,shufflenet那种x=torch.transpose(x,1,2).contiguous() 的操作一般是不支持的。需要进行调整。 2.使用工程以及修改 使用的是开源工程:GitHub - Lufei-github/shufflev2-yolov5: shufflev2-yolov5:lighter, faster and ea…

基于“香港世界”的SLAM技术介绍

在视觉感知技术中,理解和描述复杂的三维室外场景至关重要,尤其是自动驾驶技术的发展要求对陌生环境具有更强的适应能力和鲁棒性。传统上,使用“曼哈顿世界”和“亚特兰大世界”模型来描述具有垂直和水平结构的城市场景。 当遇到像香港这样地形…

python爬虫之scrapy框架基本使用

python爬虫之scrapy框架基本使用 1、环境安装:pip install scrapy 2、创建一个工程:scrapy startproject xxxPro 3、cd xxxPro 4、在spiders子目录中创建一个爬虫文件:scrapy genspider spiderName www.xxx.com 5、执行工程:scra…

当年很多跑到美加澳写代码的人现在又移回香港?什么原因?

当年很多跑到美加澳写代码的人现在又移回香港?什么原因? 近年来,确实有部分曾经移民到美国、加拿大、澳大利亚等地的香港居民选择移回香港。这一现象与多种因素相关,主要可以归结为以下几点: 疫情后的环境变化&#…

高通源代码版本ADK工具版本源代码release版本MDE版本介绍

0 Preface/Foreword 1 版本介绍 高通代码存放在chipcode中,网址URL:Chipcode 1.1 高通源代码版本 Bluetooth Audo芯片的高通源代码版本号(类似于分类的类名):ADK.SRC.1.0 (最新qcc307x系列及之后的芯片如…

如何用matplotlib绘制图像分类任务的类别特征空间分布

import matplotlib.pyplot as plt import numpy as np from sklearn.decomposition import PCA from sklearn.datasets import load_iris from mpl_toolkits.mplot3d import Axes3D# 加载示例数据(Iris 数据集) data load_iris() X data.data y data.…

wordpress建站有哪些优点

对于绝大多数站长来说,使用wordpress建站是一个非常不错的选择。那么wordpress建站有哪些优点呢?下面小编就来为大家解答。 1.wordpress是什么? WordPress是一款全球最受欢迎的内容管理系统(CMS),主要用于…

【第11章】MyBatis-Plus条件构造器(上)

文章目录 前言一、功能详解1. allEq2. eq3. ne4. gt5. ge6. lt7. le8. between9. notBetween10. like11. notLike12. likeLeft13. likeRight14. notLikeLeft15. notLikeRight16. isNull17. in18. notIn19. inSql20. notInSql21. eqSqlSince 3.5.622. gtSql Since 3.4.3.223. ge…

LLM大模型工程师面试经验宝典--进阶版(2024.7月最新)

一、什么是生成式大模型? 生成式大模型(一般简称大模型LLMs)是指能用于创作新内容,例如文本、图片、音频以及视频的一类 深度学习模型。相比普通深度学习模型,主要有两点不同: 1. 模型参数量更大&#xff…

deepin基于apt-mirror同步软件源及构建本地内网源

1.安装apt-mirror sudo apt install -y apt-mirror2.配置apt-mirror(/etc/apt/mirror.list) sudo cp /etc/apt/mirror.list /etc/apt/mirror.list.deepin.bak #备份配置文件 sudo gedit /etc/apt/mirror.list修改如下: deb [trustedyes] https://mirrors.bfsu.ed…