STM32第十二课:ADC检测烟雾浓度(MQ2)

news2025/1/15 18:02:12

文章目录

  • 需求
  • 一、MQ-2 气体传感器
    • 特点
    • 应用
    • 电路及引脚
  • 二、实现流程
    • 1.开时钟,分频,配IO
    • 2.配置ADC的工作模式
    • 3.配置通道
    • 4.复位,AD校准
    • 5.数值的获取
  • 需求实现
  • 总结


需求

使用ADC将MQ2模块检测到的烟雾浓度模拟量转化为数字量。
最后,将实时检测的结果显示在串口上。
在这里插入图片描述


一、MQ-2 气体传感器

特点

广泛的探测范围,高灵敏度,快速响应恢复,优异的稳定性,寿命长以及简单的驱动电路。

应用

可用于家庭和工厂的气体泄漏监测装置, 适宜于液化气、丁烷、丙烷、甲烷、酒精、氢气、烟雾等的探测。

电路及引脚

在这里插入图片描述
在这里插入图片描述

二、实现流程

由于该模块的实现流程和ADC光照采集几乎一样,下面使用库函数的方式来编写。

1.开时钟,分频,配IO

该模块使用的引脚为PC1/ADC123_IN11,所以接下来我们要配置PC1。
烟雾检测模块是获得一个模拟量,所以接引脚模式配置为模拟输入。
代码如下:

	//开时钟ADC1和PC
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC|RCC_APB2Periph_ADC1,ENABLE);
	RCC_ADCCLKConfig(RCC_PCLK2_Div6); 
	//配置GPIO口
	GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;//MQ2
    GPIO_Init(GPIOC, &GPIO_InitStructure);

2.配置ADC的工作模式

和光照检测一样,直接改成库函数就行。
代码如下(示例):

	ADC_InitTypeDef ADC_InitStruct={0};  //
	ADC_InitStruct.ADC_Mode = ADC_Mode_Independent;//ADC独立模式
	ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right;//数据右对齐
	ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;//选择软件SWSTART位触发
	ADC_InitStruct.ADC_ContinuousConvMode = DISABLE;//连续还是单次模式
	ADC_InitStruct.ADC_ScanConvMode = DISABLE;//关闭扫描
	ADC_InitStruct.ADC_NbrOfChannel = 1;
	ADC_Init(ADC1,&ADC_InitStruct);
	ADC_Cmd(ADC1, ENABLE);

3.配置通道

这里使用库函数编写就很简单了,直接一个函数就解决了。
输入参数 1 ADCx:x 可以是 1 或者 2 来选择 ADC 外设 ADC1 或 ADC2
输入参数 2 ADC_Channel:被设置的 ADC 通道
输入参数 3 Rank:规则组采样顺序。取值范围 1 到 16。
输入参数 4 ADC_SampleTime:指定 ADC 通道的采样时间值

ADC_RegularChannelConfig(ADC1, ADC_Channel_11,1, ADC_SampleTime_239Cycles5);

4.复位,AD校准

没什么好说的,该部分可有可无,想严谨点的话就加上。

	ADC_ResetCalibration(ADC1);//复位
	  while(ADC_GetResetCalibrationStatus(ADC1));
    ADC_StartCalibration(ADC1);//AD校准
	  while(ADC_GetCalibrationStatus(ADC1));	

5.数值的获取

依旧是先转换一次,再while等待转换完成,最后读取打印。

void Get_Smoke_Value()
{
	uint16_t Smoke=0;
	//让规则通道转换一次
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);
	//ADC1->CR2 |= 0x01<<22;
	while(ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC) == 0)//判断寄存器的位2是不是等于1,是0就等待转换完成
	{}
	Smoke = ADC_GetConversionValue(ADC1); //读规则组通道数据寄存器
	printf("烟雾浓度参数 = %d \r\n",Smoke);		
	return; 
}

需求实现

关键代码如下:
main.c

#include "stm32f10x.h"
#include "usart.h"
#include "stdio.h"
#include "delay.h"
#include "string.h"
#include "pwm.h"
#include "adc.h"

int main()
{
	  NVIC_SetPriorityGrouping(5);//两位抢占两位次级
      Usart1_Config(); 
	  SysTick_Config(72000);
	  RGBpwm_Config();
	  uint8_t cai_count=0;
	  uint16_t cont=0;
	  Adc_Config();
    while(1)
    {	
			if(ledcnt[0]>=ledcnt[1]){//过去500ms
			ledcnt[0]=0;
					Get_Smoke_Value();
			}
    }
		
		return 0;
}

adc.c

#include "ADC.h"
//库函数
void Adc_Config(void)
{
	//开时钟ADC1和PC,PA
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC|RCC_APB2Periph_ADC1,ENABLE);
	RCC_ADCCLKConfig(RCC_PCLK2_Div6); 
	//配置GPIO口
	GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;//MQ2
    GPIO_Init(GPIOC, &GPIO_InitStructure);
	//配置ADC1
	ADC_InitTypeDef ADC_InitStruct={0};  //
	ADC_InitStruct.ADC_Mode = ADC_Mode_Independent;//ADC独立模式
	ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right;//数据右对齐
	ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;//选择软件SWSTART位触发
	ADC_InitStruct.ADC_ContinuousConvMode = DISABLE;//连续还是单次模式
	ADC_InitStruct.ADC_ScanConvMode = DISABLE;//关闭扫描
	ADC_InitStruct.ADC_NbrOfChannel = 1;
	ADC_Init(ADC1,&ADC_InitStruct);
	ADC_Cmd(ADC1, ENABLE);
	//配置通道
	ADC_RegularChannelConfig(ADC1, ADC_Channel_11,1,  ADC_SampleTime_239Cycles5);
	//校准
	ADC_ResetCalibration(ADC1);
	  while(ADC_GetResetCalibrationStatus(ADC1));
    ADC_StartCalibration(ADC1);
		while(ADC_GetCalibrationStatus(ADC1));	

}

void Get_Smoke_Value()
{
	uint16_t Smoke=0;
	//让规则通道转换一次
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);
	//ADC1->CR2 |= 0x01<<22;
	while(ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC) == 0)//判断寄存器的位2是不是等于1,是0就等待转换完成
	{}
	Smoke = ADC_GetConversionValue(ADC1); //读规则组通道数据寄存器
	printf("烟雾浓度参数 = %d \r\n",Smoke);
		
	return; 
}

adc.h

#ifndef _ADC_H_
#define _ADC_H_
#include "stm32f10x.h"
#include "stdio.h"
void Get_Smoke_Value();
void Adc_Config(void);
#endif
		

总结

大致流程和ADC光照采集差别不大,照着一步一步做就能实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1881939.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Go 微服务] Kratos 验证码业务

文章目录 1.环境准备2.验证码服务2.1 kratos 初始化验证码服务项目2.2 使用 Protobuf 定义验证码生成接口2.3 业务逻辑代码实现 1.环境准备 protoc和protoc-gen-go插件安装和kratos工具安装 protoc下载 下载二进制文件&#xff1a;https://github.com/protocolbuffers/protobu…

CocosCreator构建IOS教程

CocosCreator构建IOS教程 添加include: Header Search Paths:拖拽include过来 添加SoundEngine: Header Search Paths: 把SoundEngine POSIX Common 三个文件夹拖拽到里面去

IEEE TNNLS | 脑电(EEG)自监督学习

摘要 数十年的研究表明&#xff0c;与传统的统计技术相比&#xff0c;机器学习在探索脑电图(EEG)记录中嵌入的高度非线性模式方面具有优势。然而&#xff0c;即使是最先进的机器学习技术也需要相对较大且标记完整的EEG存储库。EEG数据的收集和标记成本高昂。此外&#xff0c;由…

Google ghOSt 调度器分析(4)

调度器的优缺点 *ghOSt* 调度器的优缺点优点缺点*ghost* 与 *CFS* 调度运行时间比较 ghOSt 调度器的优缺点 优点 逻辑简单&#xff0c;实现简单&#xff1b;它只是在内核中增加了两个调度类&#xff0c;通过对这两个调度类的操作来完成相应任务的优先级的提升等操作&#xff…

HarmonyOS(42) Divider 分割器组件 实现分割线

Divider分割线 简介使用示例参考目录 简介 该组件可以帮助我们实现 水平分割线和竖直分割线&#xff0c;同时支持设置分割线的宽度、颜色、和两端的样式 使用示例 横向分割线 &#xff0c;默认就是横向分割 // Horizontal dividerColumn() {this.Block()Divider()this.Bloc…

如何使用ChatGPT提高数学建模竞赛的获奖概率

如何使用ChatGPT提高数学建模竞赛的获奖概率 数学建模助手GPT https://chatgpt-plus.top/g/g-OX0D7uMn9-shu-ju-jian-mo-zhu-shou-by-maynor 1. 问题分析与理解 在数学建模的初期&#xff0c;准确理解问题的背景和要求至关重要。通过使用ChatGPT&#xff0c;你可以&#xff…

【基础篇】第4章 查询与过滤

在Elasticsearch的世界里&#xff0c;高效地从海量数据中检索出所需信息是其核心价值所在。本章将深入解析查询与过滤的机制&#xff0c;从基础查询到复合查询&#xff0c;再到全文搜索与分析器的定制&#xff0c;为你揭开数据检索的神秘面纱。 4.1 基本查询 4.1.1 Match查询…

Spring MVC 获取三个域(request请求域,session 会话域,application 应用域)对象的方式

1. Spring MVC 获取三个域(request请求域&#xff0c;session 会话域&#xff0c;application 应用域)对象的方式 文章目录 1. Spring MVC 获取三个域(request请求域&#xff0c;session 会话域&#xff0c;application 应用域)对象的方式2. Servlet中的三个域对象3. 准备工作3…

8.12 矢量图层面要素单一符号使用十二(插值线渲染边界)

文章目录 前言插值线渲染边界&#xff08;Outline: Interpolated Line&#xff09;QGis设置面符号为插值线渲染边界&#xff08;Outline: Interpolated Line&#xff09;二次开发代码实现插值线渲染边界&#xff08;Outline: Interpolated Line&#xff09; 总结 前言 本章介绍…

【Linux】部署NFS服务实现数据共享

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;CSDN博客专家   &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01…

【Linux】虚拟机安装openEuler 24.03 X86_64 教程

目录 一、概述 1.1 openEuler 覆盖全场景的创新平台 1.2 系统框架 1.3 平台框架 二、安装详细步骤 一、概述 1.1 openEuler 覆盖全场景的创新平台 openEuler 已支持 x86、Arm、SW64、RISC-V、LoongArch 多处理器架构&#xff0c;逐步扩展 PowerPC 等更多芯片架构支持&…

前端技术(二)——javasctipt 介绍

一、javascript基础 1. javascript简介 ⑴ javascript的起源 ⑵ javascript 简史 ⑶ javascript发展的时间线 ⑷ javascript的实现 ⑸ js第一个代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>…

nlp--最大匹配分词(计算召回率)

最大匹配算法是一种常见的中文分词算法&#xff0c;其核心思想是从左向右取词&#xff0c;以词典中最长的词为优先匹配。这里我将为你展示一个简单的最大匹配分词算法的实现&#xff0c;并结合输入任意句子、显示分词结果以及计算分词召回率。 代码 : # happy coding…

MATLAB使用系统辨识工具箱建立PID水温的传递函数系数

概述 利用PID控制水温&#xff0c;由于实际在工程项目中&#xff0c;手动调节PID参数比较耗费时间&#xff0c;所以可以先利用MATLAB中的Simulink软件建立模型&#xff0c;先在仿真软件上调节大概的PID参数&#xff0c;再利用此PID参数为基础在实际的工程项目中手动调节PID参数…

百刀神书!从0搭建神经网络!我服!

《Neural Networks from Scratch in Python》是一本深入浅出的书籍&#xff0c;旨在帮助读者从零开始理解和实现神经网络模型。作者使用Python语言&#xff0c;从基本的数学概念和神经网络的基本原理开始&#xff0c;逐步引导读者探索神经网络的各个组成部分。 该书介绍了神经…

【区块链+基础设施】区块链服务网络 BSN | FISCO BCOS应用案例

BSN&#xff08;Blockchain-based Service Network&#xff0c;区块链服务网络&#xff09;是一个跨云服务、跨门户、跨底层框架&#xff0c;用于部 署和运行各类区块链应用的全球性基础设施网络&#xff0c;旨在为开发者提供低成本和技术互通的区块链一站式服务。 2019 年 12…

深度解读昇腾CANN多流并行技术,提高硬件资源利用率

随着人工智能应用日益成熟&#xff0c;文本、图片、音频、视频等非结构化数据的处理需求呈指数级增长&#xff0c;数据处理过程从通用计算逐步向异构计算过渡。面对多样化的计算需求&#xff0c;昇腾AI处理器内置丰富的硬件计算资源用于处理不同的计算任务。其中&#xff0c;AI…

6.基于SpringBoot的SSMP整合案例-业务层开发

目录 1.业务层标准开发 1.1接口定义 1.2实现类定义 1.3测试类定义 1.4小结&#xff1a; 2.业务层快速开发 2.1使用MyBatisP1us提供有业务层通用接口(ISerivce)与业务层通用实现类(ServiceImpl),t> 接口定义&#xff1a; 实现类定义&#xff1a; 2.2在通用类基础上做功…

springboot实验报告管理系统-计算机毕业设计源码10596

目录 1 绪论 1.1 选题背景与意义 1.2国内外研究现状 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1系统开发流程 2.2.2 用户登录流程 2.2.3 系统操作流程 2.2.4 添加信息流程 2.2.5 修改信息流程 2.2.6 删除信息流程 2.3 系统功能分析 …

思维模型:看透本质的思维框架,和它组合个个是王炸(非常详细)零基础入门到精通, 收藏这一篇就够了

为什么要从「为什么」开始&#xff1f; 如何想到又做到&#xff0c;提高行动力&#xff1f; 知行合一的途径&#xff1f;有用的工具&#xff1f; 剧透一下&#xff0c;读完本篇&#xff0c;你会收获一些王炸组合。 01 黄金思维圈 Why→How→What 黄金思维圈是西蒙斯涅克…