OpenCV 调用自定义训练的 YOLO-V8 Onnx 模型

news2025/1/17 23:00:11

一、YOLO-V8 转 Onnx

在本专栏的前面几篇文章中,我们使用 ultralytics 公司开源发布的 YOLO-V8 模型,分别 Fine-Tuning 实验了 目标检测、关键点检测、分类 任务,实验后发现效果都非常的不错,但是前面的演示都是基于 ultralytics 框架实现的,如果要发布到移动端或服务端,就需要考虑通用开放格式了,比如 Onnx 格式。

Onnx 格式是一种开放格式,用于表示深度学习模型。它是由微软,亚马逊和Facebook共同开发的,目的是为了促进不同深度学习框架和工具之间的模型互操作性。通过Onnx,开发人员可以更容易地在不同的深度学习框架之间转换模型,例如从PyTorchTensorFlow,反之亦然。

ultralytics 框架针对格式的转换已经做好了封装,只需要通过 model.export 方法,便可以转到多种不同格式的模型,格式如下:

格式format模型元数据论据
PyTorch-yolov8n.pt-
TorchScripttorchscriptyolov8n.torchscriptimgsz, optimize, batch
ONNXonnxyolov8n.onnximgsz, half, dynamic, simplify, opset, batch
OpenVINOopenvinoyolov8n_openvino_model/imgsz, half, int8, batch
TensorRTengineyolov8n.engineimgsz, half, dynamic, simplify, workspace, int8, batch
CoreMLcoremlyolov8n.mlpackageimgsz, half, int8, nms, batch
TF SavedModelsaved_modelyolov8n_saved_model/imgsz, keras, int8, batch
TF GraphDefpbyolov8n.pbimgsz, batch
TF 轻型tfliteyolov8n.tfliteimgsz, half, int8, batch
TF 边缘TPUedgetpuyolov8n_edgetpu.tfliteimgsz
TF.jstfjsyolov8n_web_model/imgsz, half, int8, batch
PaddlePaddlepaddleyolov8n_paddle_model/imgsz, batch
NCNNncnnyolov8n_ncnn_model/imgsz, half, batch

下面使用前面做过的人脸检测模型,转为 Onnx 格式,并使用 OpenCV 运行推理,该模型的训练过程可以参考下面文章:

基于 YOLO V8 Fine-Tuning 训练自定义的目标检测模型(人脸检测)

下面过程使用的依赖版本如下:

ultralytics==8.1.37
opencv-python==4.7.0.68
onnx==1.16.1

YOLO-V8 默认的 Pytorch 模型转为 Onnx 模型 :

from ultralytics import YOLO

model = YOLO("runs/detect/train/weights/best.pt")

model.export(format="onnx", imgsz=[640,640], opset=12)

运行后可以在 runs/detect/train/weights/ 下看到 best.onnx 模型:

在这里插入图片描述

二、OpenCV 调用 Onnx 模型

OpenCVdnn 模块提供了 readNetFromONNX ,可以方便的读取 Onnx 模型,整个运行示例过程如下:

import cv2
import numpy as np

onnx_model_path = "runs/detect/train/weights/best.onnx"
input_shape = (640, 640)
net = cv2.dnn.readNetFromONNX(onnx_model_path)
model_classify = ["face"]


def recognize(img_path, threshold=0.5):
    img = cv2.imread(img_path)
    blob = cv2.dnn.blobFromImage(img, 1 / 255.0, input_shape, swapRB=True, crop=False)
    net.setInput(blob)

    output = net.forward()
    output = output.transpose((0, 2, 1))

    height, width, _ = img.shape
    x_factor, y_factor = width / input_shape[0], height / input_shape[1]

    classifys, scores, boxes = [], [], []
    for i in range(output[0].shape[0]):
        box = output[0][i]
        _, _, _, max_idx = cv2.minMaxLoc(box[4:])
        class_id = max_idx[1]
        score = box[4:][class_id]
        if (score > threshold):
            scores.append(score)
            classifys.append(model_classify[int(class_id)])
            x, y, w, h = box[0].item(), box[1].item(), box[2].item(), box[3].item()
            x = int((x - 0.5 * w) * x_factor)
            y = int((y - 0.5 * h) * y_factor)
            w = int(w * x_factor)
            h = int(h * y_factor)
            box = np.array([x, y, w, h])
            boxes.append(box)

    indexes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45)
    for i in indexes:
        classify, score, box = classifys[i], scores[i], boxes[i]
        print(class_id, score, box)
        x, y, w, h = box[0], box[1], box[2], box[3]
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)
        label = f'{classify}: {score:.2f}'
        cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    cv2.imshow("img", img)
    cv2.waitKey(0)


if __name__ == '__main__':
    recognize('data/images/10.jpg',0.3)

运行效果示例:

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1881386.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SpringCloud】Zuul源码解析

Zuul是一个网关组件&#xff0c;是微服务的入口&#xff0c;网关会根据配置将请求转发给指定的服务。本章分析Zuul组件是如何实现请求过滤和转发的 参考源码&#xff1a;<spring-cloud.version>Hoxton.SR9</spring-cloud.version> 1、过滤 spring-cloud-netflix-…

重温react-13(嵌套路由和重定向等)

重定向和404 import React from react; import { Routes, Route, Link,NavLink ,Navigate} from react-router-dom; import Home from ./Home/Home import About from ./About/About import News from ./News/News import NotFound from ./NotFound/NotFound; export default …

51单片机第18步_将TIM0用作13位定时器

本章重点学习将TIM0用作13位定时器。 1、定时器0工作在模式0框图 2、定时器0工作在模式0举例 1、Keil C51中有一些关键字&#xff0c;需要牢记&#xff1a; interrupt 0&#xff1a;指定当前函数为外部中断0&#xff1b; interrupt 1&#xff1a;指定当前函数为定时器0中断…

VUE 修改密码功能+密码强度校验

效果图 <template><el-dialogtitle"修改密码":visible.sync"dialog":before-close"cancel":close-on-click-modal"false"width"500px":modal"false"><el-form ref"form" :model"…

SpringMvc 执行原理

当用户请求 会发送到前端控制器&#xff0c;DisptcherServlet根据请求参数生成代理请求&#xff0c;找到对应的实际控制器&#xff0c;控制器处理请求&#xff0c;创建数据模型&#xff0c;访问数据库&#xff0c;将模型响应给中心控制器&#xff0c;控制器使用模型与视图渲染视…

算法题型归类整理及同类题型解法思路总结(持续更新)

1、最优路线 通用思路 1、递归 #案例1-最优路测路线 题目描述 评估一个网络的信号质量&#xff0c;其中一个做法是将网络划分为栅格&#xff0c;然后对每个栅格的信号质量计算。 路测的时候&#xff0c;希望选择一条信号最好的路线&#xff08;彼此相连的栅格集合&#x…

人工智能的目标分类

欢迎来到 Papicatch的博客 目录 &#x1f349;引言 &#x1f349;目标分类的概述 &#x1f348;背景 &#x1f348;分类的重要性 &#x1f34d;明确研究重点 &#x1f34d;促进应用推广 &#x1f34d;便于评估和比较 &#x1f348;分类的原则 &#x1f34d;基于应用领…

F_GETDOWN的例子

代码&#xff1a; 7:46 2024/7/1#include <unistd.h> #include <fcntl.h> #include <stdio.h> int main(void) {int uid;int fdopen("test.txt",O_RDWR);uidfcntl(fd,F_GETOWN);printf("the SIG recv ID is %d\n",uid);close(fd);retur…

使用 Vue 实现包含单选框的弹窗功能(附Demo)

目录 前言1. Vue22. Vue3 前言 如果在弹窗中单独增设一些选项或者少部分的数据&#xff0c;可用如下的方式 &#xff08;不用单独创建专门的表单样式&#xff09; 如果单纯可以通过基本的按钮传输给后端&#xff0c;可用如下知识点 对于弹窗的基本知识推荐阅读&#xff1a; …

了解 ZooKeeper:关键概念和架构

ZooKeeper 是一种分布式协调服务&#xff0c;广泛用于分布式系统中&#xff0c;用于维护配置信息、命名、同步和组服务。它最初由雅虎开发&#xff0c;现在是一个 Apache 项目&#xff0c;已成为许多大型分布式应用程序不可或缺的一部分。本文深入探讨 ZooKeeper 的关键概念和架…

(四)Appdesigner-文件存在判断及对话框设计

目录 前言 一、文件存在判断 &#xff08;一&#xff09;基础知识 &#xff08;二&#xff09;实际操作 二、对话框设计 &#xff08;一&#xff09;基础知识 1.提示对话框 2.询问对话框 3.文件选择对话框 &#xff08;二&#xff09;实际操作 1.提示对话框 2.询问…

考研生活day1--王道课后习题2.2.1、2.2.2、2.2.3

2.2.1 题目描述&#xff1a; 解题思路&#xff1a; 这是最基础的操作&#xff0c;思路大家应该都有&#xff0c;缺少的应该是如何下笔&#xff0c;很多同学都是有思路但是不知道如何下笔&#xff0c;这时候看思路的意义不大&#xff0c;可以直接看答案怎么写&#xff0c;最好…

关于内存和外存文件不同字符集下占用空间大小问题

关于内存和外存不同字符集下文件占用空间大小问题 存储&#xff08;外存&#xff09;的文件中的字符&#xff1a; ASCII&#xff1a;每个字符占用1个字节&#xff0c;用来存储英文字符和常用标点符号。ISO-8859-1&#xff1a;每个字符占用1个字节&#xff0c;向下兼容ASCII。G…

【代码随想录】【算法训练营】【第53天】 [739]每日温度 [496]下一个更大元素I [503]下一个更大元素II

前言 思路及算法思维&#xff0c;指路 代码随想录。 题目来自 LeetCode。 day 48&#xff0c;周六&#xff0c;不能再坚持~ 题目详情 [739] 每日温度 题目描述 739 每日温度 解题思路 前提&#xff1a; 思路&#xff1a; 重点&#xff1a; 代码实现 C语言 [496] 下一…

【一篇搞懂】操作系统期末大题:进程同步与互斥 PV操作

文章目录 一、前言&#x1f680;&#x1f680;&#x1f680;二、正文&#xff1a;☀️☀️☀️题型一&#xff1a;利用信号量实现前驱关系题型二&#xff1a;利用信号量实现资源同步与互斥 一、前言&#x1f680;&#x1f680;&#x1f680; 本文简介&#xff1a;这是一篇基于b…

Pycharm常用快捷键整理

1&#xff0c;格式化代码 【ctrlAltL】 写代码的时候会发现有很多黄色的波浪号&#xff0c;这个时候可以点击任意黄色波浪号的代码&#xff0c;然后按下【Ctrl Alt L】进行代码格式化 2&#xff0c;快速往返 ctrll Alt ⬅ &#xff0c;表示查看上一步调用函数位置&#xff0…

Redis 7.x 系列【9】数据类型之自动排重集合(Set)

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 前言2. 常用命令2.1 SADD2.2 SCARD2.3 SISMEMBER2.4 SREM2.5 SSCAN2.6 SDIFF2.7 SU…

华为OD机试 - 启动多任务排序 - 拓扑排序(Java 2024 D卷 200分)

华为OD机试 2024D卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试&#xff08;JAVA&#xff09;真题&#xff08;D卷C卷A卷B卷&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;每一题都有详细的答题思路、详细的代码注释、样例测…

如何做好一个企业家IP:塑造独特的个人品牌

在当今数字化时代&#xff0c;个人品牌的力量愈发凸显&#xff0c;对于企业家而言&#xff0c;一个强大的IP&#xff08;Intellectual Property&#xff0c;即知识产权或个人品牌&#xff09;不仅有助于提升个人影响力&#xff0c;还能为企业的发展注入强大动力。那么&#xff…

BGE M3-Embedding 模型介绍

BGE M3-Embedding来自BAAI和中国科学技术大学&#xff0c;是BAAI开源的模型。相关论文在https://arxiv.org/abs/2402.03216&#xff0c;论文提出了一种新的embedding模型&#xff0c;称为M3-Embedding&#xff0c;它在多语言性&#xff08;Multi-Linguality&#xff09;、多功能…