BGE M3-Embedding 模型介绍

news2025/1/18 4:33:48

BGE M3-Embedding来自BAAI和中国科学技术大学,是BAAI开源的模型。相关论文在https://arxiv.org/abs/2402.03216,论文提出了一种新的embedding模型,称为M3-Embedding,它在多语言性(Multi-Linguality)、多功能性(Multi-Functionality)和多粒度性(Multi-Granularity)方面表现出色。M3-Embedding支持超过100种工作语言,支持8192长度的输入文本,同时支持密集检索(Dense Retrieval)、多向量检索(Multi-Vector Retrieval)和稀疏检索(Sparse Retrieval),为现实世界中的信息检索(IR)应用提供了统一的模型基础,通过这几种检索方式的组合,取得了良好的混合召回效果。

我们可以查看官方与openai模型的对比,整体来看,采用三种方式联合检索的BGE-M3(ALL)在三项评测中全面领先,而 BGE-M3(Dense)稠密检索在多语言、跨语言检索中具有明显优势。

BGE-M3 模型亮点#

1. 多语言(Multi-Linguality),训练集包含100+种以上语言
2. 多功能(Multi-Functionality),支持稠密检索(Dense Retrieval),还支持稀疏检索(Sparse Retrieval)与多向量检索(Multi-vector Retrieval)
3. 多粒度(Multi-Granularity) BGE-M3目前可以处理最大长度为8192 的输入文本,支持“句子”、“段落”、“篇章”、“文档”等不同粒度的输入文本

BGE-M3 训练数据#

M3-Embedding模型的训练数据组成是模型效果较好的一个关键创新点,因为它旨在支持多语言性、多功能性和多粒度性,训练数据分为三部分:

M3-Embedding模型训练数据

  1. 无监督数据(Unsupervised Data)
    • 从大量多语言语料库中提取未经标记的文本数据,这些语料库包括Wikipedia、S2ORC、xP3、mC4和CC-News等。
    • 这些数据通过提取丰富的语义结构(例如标题-正文、标题-摘要、指令-输出等)来丰富模型的语义理解能力。
    • 无监督数据的规模达到了1.2亿文本对,覆盖了194种语言和2655种跨语言对应关系。
  2. 微调数据(Fine-tuning Data)
    • 来自标记语料库的高质量数据,包括英语、中文和其他语言的数据集。
    • 例如,英语数据集包括HotpotQA、TriviaQA、NQ、MS MARCO等,而中文数据集包括DuReader、T2-Ranking、NLI-zh等。
    • 这些数据集用于进一步微调模型,以提高其在特定任务和语言上的性能。
  3. 合成数据(Synthetic Data)
    • 为了解决长文档检索任务中数据不足的问题,研究者们生成了额外的多语言微调数据(称为MultiLongDoc)。
    • 通过从Wikipedia和MC4数据集中随机选择长文章,并从中随机选择段落,然后使用GPT-3.5生成基于这些段落的问题,生成的问题和所选文章构成新的文本对,增加了训练数据的多样性和覆盖范围。

这些训练数据的创新之处在于:

  • 多语言覆盖:M3-Embedding通过大规模的多语言无监督数据,学习不同语言之间的共同语义空间,从而支持多语言检索和跨语言检索。
  • 数据多样性:通过结合无监督数据、微调数据和合成数据,M3-Embedding能够捕捉到不同类型和长度的文本数据的语义信息,从而提高模型对不同输入粒度的处理能力。
  • 高质量数据整合:通过精心筛选和整合不同来源的数据,M3-Embedding确保了训练数据的高质量,这对于模型学习有效的文本嵌入至关重要。

通过这种创新的训练数据组成,M3-Embedding能够有效地学习并支持超过100种语言的文本嵌入,同时处理从短句到长达8192个词符的长文档,实现了在多语言、多功能和多粒度方面的突破。

从业界来看,M3-EmbeddingE5-mistral-7b,都是利用GPT这样的LLM来合成了大量多语言数据,这个应该是后续的主流方案。

BGE-M3 混合检索#

M3-Embedding统一了嵌入模型的三种常见检索功能,即密集检索(Dense retrieval)、词汇(稀疏)检索(Lexical retrieval)和多向量检索(Multi-vector retrieval)。以下是这些方法的公式化描述:

  • 密集检索(Dense retrieval):输入查询q被转换为基于文本编码器的隐藏状态Hq,使用特殊标记“[CLS]”的归一化隐藏状态来表示查询:$e_q = \text{norm}(H_q[0])$。类似地,我们可以获取段落p的嵌入表示为 $e_p = \text{norm}(H_p[0])$。查询和段落之间的相关性得分通过两个嵌入向量 $e_p$ 和 $e_q$的内积来度量:$s_{\text{dense}} \leftarrow \langle e_p, e_q \rangle$。
    def dense_embedding(self, hidden_state, mask):
        if self.sentence_pooling_method == 'cls':
            return hidden_state[:, 0]
        elif self.sentence_pooling_method == 'mean':
            s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
            d = mask.sum(axis=1, keepdim=True).float()
            return s / d
  • 词汇检索(Lexical Retrieval):输出嵌入还被用来估计每个词项的重要性,以促进词汇检索。对于查询中的每个词项t(在我们的工作中,词项对应于一个标记),词项权重被计算为 $w_{qt} \leftarrow \text{Relu}(W_{\text{lex}} H_q[i])$,其中 $W_{\text{lex}} \in \mathbb{R}^{d \times 1}$ 是将隐藏状态映射到一个实数的矩阵。如果词项t在查询中出现多次,我们只保留其最大权重。我们以相同的方式计算段落中每个词项的权重。基于估计的词项权重,查询和段落之间的相关性得分通过查询和段落中共同出现的词项(表示为$q ∩ p$)的联合重要性来计算:$s_{\text{lex}} \leftarrow \sum_{t \in q \cap p}(w_{qt} \cdot w_{pt})$。

How does BGE-M3 work to generate learned sparse embeddings? Let’s use the same user query above to illustrate this process.

From words to tokens

Generating these learned sparse embeddings begins with the same foundational steps as BERT — tokenization and encoding the input text into a sequence of contextualized embeddings ( H ).

From tokens to sparse embeddings.png

However, BGE-M3 innovates this process by utilizing a more granular approach to capture the significance of each token:

  1. Token Importance Estimation: Instead of relying solely on the [CLS] token representation ( H[0] ), BGE-M3 evaluates the contextualized embedding of each token ( H[i] ) within the sequence.
  2. Linear Transformation: An additional linear layer is appended to the output of the stack of encoders. This layer computes the importance weights for each token. By passing the token embeddings through this linear layer, BGE-M3 obtains a set of weights ( W_{lex} ).
  3. Activation Function: A Rectified Linear Unit (ReLU) activation function is applied to the product of ( W_{lex} ) and ( H[i] ) to compute the term weight ( w_{t} ) for each token. Using ReLU ensures that the term weight is non-negative, contributing to the sparsity of the embedding.
  4. Learned Sparse Embedding: The output result is a sparse embedding, where each token is associated with a weight value, indicating its importance in the context of the entire input text.

This representation enriches the model’s understanding of language nuances and tailors the embeddings for tasks where both semantic and lexical elements are critical, such as search and retrieval in large databases. It’s a significant step towards more precise and efficient mechanisms for sifting through and making sense of vast textual data.

  • 多向量检索(Multi-Vector Retrieval):作为密集检索的扩展,多向量方法利用整个输出嵌入来表示查询和段落:$E_q = \text{norm}(W_{\text{mul}} H_q), E_p = \text{norm}(W_{\text{mul}} H_p)$,其中 $W_{\text{mul}} \in \mathbb{R}^{d \times d}$ 是可学习的投影矩阵。按照ColBERT(Khattab和Zaharia, 2020)的方法,使用后期交互来计算细粒度的相关性得分:$s_{\text{mul}} \leftarrow \frac{1}{N} \sum_{i=1}^{N} \max_{j=1}^{M} E_q[i] \cdot E_p[j]$;N和M分别是查询和段落的长度。

由于嵌入模型的多功能性,检索过程可以在混合过程中进行。首先,可以通过每种方法单独检索候选结果(由于其高成本,可以免去多向量方法的这一步)。最终的检索结果是根据集成的相关性得分重新排序的:$s_{\text{rank}} \leftarrow s_{\text{dense}} + s_{\text{lex}} + s_{\text{mul}}$。

BGE-M3训练方式和创新点#

BGE-M3采用多阶段

BGE-M3模型训练分为三个阶段:

  • 1)RetroMAE预训练,在105种语言的网页数据和wiki数据上进行,提供一个可以支持8192长度和面向表示任务的基座模型;

  • 2)无监督对比学习,在194种单语言和1390种翻译对数据共1.1B的文本对上进行的大规模对比学习;

  • 3)多检索方式统一优化,在高质量多样化的数据上进行多功能检索优化,使模型具备多种检索能力。

  • 其中,一些重要的关键技术如下:

1. 自学习蒸馏

人类可以利用多种不同的方式计算结果,矫正误差。模型也可以,通过联合多种检索方式的输出,可以取得比单检索模式更好的效果。因此,BGE-M3使用了一种自激励蒸馏方法来提高检索性能。具体来说,合并三种检索模式的输出,得到新的文本相似度分数,将其作为激励信号,让各单模式学习该信号,以提高单检索模式的效果。

image.png

2. 训练效率优化

通过根据长度对文本数据进行分组,确保一个batch内文本长度相对相似,从而减少填充。为了减少文本建模时的显存消耗,将一批数据分成多个小批。对于每个小批,利用模型编码文本,收集输出的向量同时丢弃所有前向传播中的中间状态,最后汇总向量计算损失,可以显著增加训练的batch size。

Efficient Batching

3. 长文本优化

BGE-M3提出了一种简单而有效的方法:MCLS(Multiple CLS)来增强模型的能力,而无需对长文本进行微调。

MCLS方法旨在利用多个CLS令牌来联合捕获长文本的语义。为每个固定数量的令牌插入一个cls令牌,每个cls令牌可以从相邻的令牌获取语义信息,最后通过对所有cls令牌的最后隐藏状态求平均值来获得最终的文本嵌入。

MCLS

BGE-M3 实验结果#

多语言检索任务,稀疏检索(Sparse)大幅超过了传统的稀疏匹配算法BM25。多向量检索(multi-vector)则获得了三种检索方式中的最佳效果。

多语言检索任务

跨语言检索能力(MKQA)

BGE-M3在跨语言任务上依然具备最佳的检索效果。稀疏检索并不擅长应对跨语言检索这种词汇重合度很小的场景。因此,稀疏检索的自身效果以及与其他方法混搭所带来的收益相对较小。

跨语言检索能力

长文档检索能力 (MLRB: Multi-Lingual Long Retrieval Benchmark)

BGE-M3可以支持长达8192的输入文档,从实验结果可以观察到,稀疏检索(Sparse)的效果要显著高于稠密检索(Dense),这说明关键词信息对于长文档检索极为重要。

长文档检索能力

BGE-M3 模型微调#

需要先安装,

  • with pip
pip install -U FlagEmbedding
  • from source
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .

模型微调的数据集格式是json line格式文件,json格式如下:

{"query": str, "pos": List[str], "neg":List[str]}

query 是查询,pos 是正文本列表,neg 是负文本列表。

模型训练:

torchrun --nproc_per_node {number of gpus} \
-m FlagEmbedding.BGE_M3.run \
--output_dir {path to save model} \
--model_name_or_path BAAI/bge-m3 \
--train_data ./toy_train_data \
--learning_rate 1e-5 \
--fp16 \
--num_train_epochs 5 \
--per_device_train_batch_size {large batch size; set 1 for toy data} \
--dataloader_drop_last True \
--normlized True \
--temperature 0.02 \
--query_max_len 64 \
--passage_max_len 256 \
--train_group_size 2 \
--negatives_cross_device \
--logging_steps 10 \
--same_task_within_batch True \
--unified_finetuning True \
--use_self_distill True

参考文献#

  • 1 BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
    https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf
    1. 新一代通用向量模型BGE-M3:一站式支持多语言、长文本和多种检索方式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1881355.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Feign 原理流程图练习-01

目录 作业: 老师给的参考流程图 要求 解答 知识扩展 Feign基础原理 接口定义 代理对象生成 请求调用 请求发送 响应处理 容错与熔断 总结 作业: 老师给的参考流程图 pdf版本 【金山文档 | WPS云文档】 Feign https://kdocs.cn/l/ctbagIyxN348 ​ 要求 结合上面…

[C++][设计模式][状态模式]详细讲解

目录 1.动机2.模式定义3.要点总结4.代码感受1.代码一2.代码二 1.动机 在软件构建过程中,某些对象的状态如果改变,其行为也会随之而放生变化 比如文档处于只读状态,其支持的行为和读写状态支持的行为就可能完全不同 如何在运行时根据对象的状…

STM32 SWD烧写

最小电路 stm32f103x 内部已经集成了振荡电路,可以省略;rst引脚电路,可以省略,boot0,boot1不需要设置 正常烧录 -------------------------------------------------------------------STM32CubeProgrammer v2.9.0 …

antd Select前端加模糊搜索

背景&#xff1a;前端的小伙伴经常在开发antd Select的时候后端不提供搜索模糊搜索接口&#xff0c;而是全量返回数据&#xff0c;这个时候就需要我们前端自己来写一个模糊搜索了。 效果 代码截图 代码 <SelectshowSearchmode"multiple"options{studioList}filte…

读AI新生:破解人机共存密码笔记17不确定性和概率

1. 前向搜索 1.1. 通过前向搜索&#xff0c;通过考虑各种可能的动作序列的结果&#xff0c;来选择动作&#xff0c;是智能系统的基本能力 1.2. 如果一家卡车运输公司想要优化其100辆卡车在美国的运输&#xff0c;那么该公司可能需要考虑的状态数量将是10^700个 1.3. 几乎所有…

leetcode 第133场双周赛 100333.统计逆序对的数目【计数dp/滚动数组/前缀和优化】

分析&#xff1a; 先考虑如下问题。 求长度为n&#xff0c;逆序对为m的排列数量。 可以考虑dp&#xff0c;dp[i][j]定义为长度为i&#xff0c;逆序对为j的排列数量。 dp[1][0] 1; //枚举排列长度&#xff0c;或者认为枚举当前需要插到长度为i-1的排列中的数字 for(int i 1…

Mini-Contract电子合同在线签署小程序源码

Mini-Contract电子合同在线签署小程序源码&#xff0c;采用的是uniapp Vue3框架搭建&#xff0c;只有前端源码是一个聚合市场上各类电子合同解决方案商的工具&#xff0c;让用户无需一个个对接电子合同厂商&#xff0c;节省时间和精力。该程序提供了简洁的代码和最新的技术栈&a…

C++ | Leetcode C++题解之第208题实现Trie(前缀树)

题目&#xff1a; 题解&#xff1a; class Trie { private:vector<Trie*> children;bool isEnd;Trie* searchPrefix(string prefix) {Trie* node this;for (char ch : prefix) {ch - a;if (node->children[ch] nullptr) {return nullptr;}node node->children[…

现代信息检索笔记(二)

目录 信息检索概述 IR vs数据库: 结构化vs 非结构化数据 结构化数据 非结构化数据 半结构化数据 传统信息检索VS现代信息检索 布尔检索 倒排索引 一个例子 建立词项&#xff08;可以是字、词、短语、一句话&#xff09;-文档的关联矩阵。 关联向量 检索效果的评价 …

【IVI】car_service 命令行工具

【IVI】car_service 命令行工具 1、car_service服务执行2、CarShellCommand命令执行2.1 cmd car_service day-night-mode day设置白天模式2.2 cmd car_service inject-vhal-event vhal信号事件2.2.1 VehiclePropertyIds2.2.2 模拟驾驶事件 2.3 cmd car_service inject-error-ev…

STM32MP135裸机编程:使用软件触发硬件复位

0 参考资料 STM32MP13xx参考手册.pdf 1 使用寄存器实现软件复位 1.1 复位电路概述 重点关注下面标红的路线&#xff1a; 通过这条路线可以清楚看到&#xff0c;我们可以通过设置RCC_MP_GRSTCSETR寄存器让RPCTL&#xff08;复位脉冲控制器&#xff09;给NRST&#xff08;硬件复…

hmall-服务保护和分布式事务

1. 微服务保护 1.1 服务保护方案 1.1.1 请求限流 服务故障最重要原因&#xff0c;就是并发太高&#xff01;解决了这个问题&#xff0c;就能避免大部分故障。当然&#xff0c;接口的并发不是一直很高&#xff0c;而是突发的。因此请求限流&#xff0c;就是限制或控制接口访问…

常见容性负载组应用

什么是容性负载&#xff1f; 在交流系统中&#xff0c;电压和电流随电源的频率而上升和下降。电压和电流是否一起上升取决于负载的特性&#xff0c;负载有三种类型。电阻负载&#xff08;例如加热元件和白炽灯&#xff09;的影响最小&#xff0c;电压和电流一起上升和下降&…

Vue3学习笔记<->创建第一个vue项目(2)

新建一个项目目录 找一个盘新建一个目录&#xff0c;我这里在D盘创建一个vuedemo目录作为项目存放的目录。使用idea打开目录。   单击ieda底部的按钮“Terminal”&#xff0c;打开命令行窗口&#xff0c;如果命令行窗口当前目录不是“vuedemo”&#xff0c;就切换到“vuedem…

九浅一深Jemalloc5.3.0 -- ②浅*size class

目前市面上有不少分析Jemalloc老版本的博文&#xff0c;但5.3.0却少之又少。而且5.3.0的架构与之前的版本也有较大不同&#xff0c;本着“与时俱进”、“由浅入深”的宗旨&#xff0c;我将逐步分析Jemalloc5.3.0的实现。 另外&#xff0c;单讲实现代码是极其枯燥的&#xff0c;…

web渗透-反序列化漏洞

一、简介 就是把一个对象变成可以传输的字符串&#xff0c;目的就是为了方便传输。假设&#xff0c;我们写了一个class,这个class里面存有一些变量。当这个class被实例化了之后&#xff0c;在使用过程中里面的一些变量值发生了改变。以后在某些时候还会用到这个变量&#xff0…

压缩包怎么解压,解压压缩包不损坏文件

常见格式&#xff1a; ZIP&#xff1a;最常见的压缩文件格式之一&#xff0c;支持跨平台。RAR&#xff1a;另一种常见的压缩文件格式&#xff0c;通常压缩率比ZIP高&#xff0c;但不如ZIP普及。7Z&#xff1a;来自7-Zip的压缩格式&#xff0c;支持更高的压缩率和一些高级特性。…

长沙高校大学智能制造实验室数字孪生可视化系统平台建设项目验收

长沙高校大学智能制造实验室始终站在科技前沿&#xff0c;不断探索和实践智能制造的新技术、新方法。数字孪生技术作为智能制造领域的重要分支&#xff0c;其通过将物理世界的实体映射到数字世界&#xff0c;实现对实体的实时监测、模拟和分析&#xff0c;为智能制造提供了强大…

Python | Leetcode Python题解之第208题实现Trie(前缀树)

题目&#xff1a; 题解&#xff1a; class Trie:def __init__(self):self.children [None] * 26self.isEnd Falsedef searchPrefix(self, prefix: str) -> "Trie":node selffor ch in prefix:ch ord(ch) - ord("a")if not node.children[ch]:retur…

解决本机电脑只能通过localhost访问,不能通过127.0.0.1访问

背景问题 有天我启动项目&#xff0c;发现项目连接Mysq总是连接不上&#xff0c;查了url、ip、port、用户名和密码都没有错&#xff0c;就是连接不上mysql数据库&#xff0c;后来通过查找资料发现有多个进程占用3306端口。 pid 6016 是mysqld服务 而pid 9672 是一个叫 svchos…