LSTM时间序列基础学习

news2024/11/23 16:34:58

时间序列

时间序列可以是一维,二维,三维甚至更高维度的数据,在深度学习的世界中常见的是三维时间序列,这三个维度分别是(batch_size,time_step,input_dimensions)。

其中time_step是时间步,它是时间序列中的序列长度(seqence_length)。

时间序列是一种序列数据。序列数据是样本与样本之间有着特定的逻辑联系的数据,序列数据通常按照样本与样本之间的逻辑顺序排列,且这种顺序不能被轻易修改和打乱的数据。在序列数据上,我们不仅要学习特征与标签之间的关联,还要学习样本与样本之间的关联,因为序列数据中的样本会根据排序顺序影响彼此,并最终影响到标签的输出和算法的结果。

对于时间序列数据而言,样本与样本之间的关系就是上一个时间点与下一个时间点之间的关系,因此循环神经网络家族采取的手段是——依次处理时间点,并将上一个时间点的信息传递融入下一个时间点的信息的运算过程,使得下一个时间点能够获得上一个时间点传来的信息,从而在两个时间点中建立联系。

LSTM基本架构与原理

LSTM算法的结构本身十分繁复,无论是从网络架构还是数学原理角度出发,我们都很难使用简单的语言将LSTM完整呈现。

设计LSTM的诉求:
创造一个全新的架构,一套全新的数据流,为循环神经网络赋予选择性记忆和选择性传递信息的能力。选择性包含多层含义。

1.循环网络必须自行选择吸纳多少新信息,只留重点,拒绝照单全收

2.循环网络必须自行选择遗忘多少历史信息,主动遗忘无效内容,保留有效内容

3.循环网络必须自行判断,对当前时间步的预测来说最重要的信息是哪些,并将该信息输出给当前时间步,这样既可以保证当前时间步上的预测是最高效的,也不会影响向下一个时间步传递的信息。

LSTM基本结构

记忆细胞

首先,**LSTM依然是一个循环神经网络,因此LSTM的网络架构与RNN高度相似,同时LSTM也是需要遍历所有时间步,不断完成循环和嵌套的。**但不同的是,RNN由输入层(输入Xt),隐藏层和输出层(输出Yt)构成,而LSTM由输入层(输入Xt),记忆细胞(Memory Cell)和输出层(Yt)构成,其中输入,输出层与RNN的输入,输出层完全一致,而记忆细胞是LSTM独有的结构。
在这里插入图片描述**记忆细胞是LSTM的基本计算单元,在记忆细胞中,我们分割长期信息与短期信息,同时赋予循环网络对信息做选择的能力。**循环网络必须自行决定哪些长期信息会被传递下去,哪些短期信息对当前的预测最为有效,因此在记忆细胞当中,LSTM设置了两个关键变量:

1.主要负责记忆短期信息,尤其是当前时间步信息的隐藏状态h
2.主要负责长期记忆的细胞状态C

在这里插入图片描述

横向上分割为C传递和h传递两条路径;纵向上分为三个不同路径:

1.帮助循环网络选择吸纳多少新信息的输入门
2.帮助循环网络选择遗忘多少历史信息的遗忘门
3.帮助循环网络选择出对当前时间步的预测来说最重要的信息,并将该信息输出给当前时间步的输出门

在这里插入图片描述

遗忘门

**遗忘门是决定要留下多少长期信息C的关键计算单元,其数学本质是令上一个时间步传入的Ct-1乘以[0,1]之间的比例,以此筛选掉部分旧信息。**在这个计算过程中,假设遗忘门令Ct-1乘以0.7,那就是说遗忘门决定了要保留70%的历史信息,遗忘30%历史信息,这30%的信息空间就可以留给全新的信息来使用。

更新细胞状态
当遗忘门决定了哪些信息要被遗忘,输入门决定了哪些信息要被加入到长期记忆后,就可以更新用于控制长期记忆的细胞状态了。

输出门

输出门是从全新的长期信息Ct中筛选出最适合当前时间步的短期信息ht的计算单元,其数字本质是令已经计算好的长期信息Ct乘以[0,1]之间的比例,以此筛选出对当前时间步最有效的信息用于当前时间步的预测。

RNN梯度消失和梯度爆炸
梯度消失和梯度爆炸是RNN在反向传播过程中常见的问题,RNN的反向传播是通过时间的反向传播,其运行流程与一般的反向传播大有不同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1879660.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GPU配置pytorch环境(links for torch)

一、创建一个新的虚拟环境 二、激活虚拟环境 三、打开或新建一个pycharm项目,把环境选成我们刚刚新建的虚拟环境 四、从links for torch网站下载与自己cuda版本和python版本对应的torch 五、在pycharm的终端pip install 安装torch 直到显示成功安装 六、验证pytorch…

六月,允许自己做自己,别人做别人

今天结束后,2024 就过去一半了。 年初的规划完成一半了吗?如果没有也没关系,做你自己继续前进。 家人来北京旅游,我累趴了 六月初,我搬家了,这次租了一整套房,是一个小俩居、还带一个小阁楼。…

新手练习项目 6:图书管理系统

名人说:莫听穿林打叶声,何妨吟啸且徐行。—— 苏轼《定风波莫听穿林打叶声》 Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder) 目录 一、项目描述二、项目结构三、项目步骤步骤1:定义Book类步骤2:实现主程序…

FHE全同态加密介绍——小白版

1. 何为FHE? FHE中的evluation key p k e v a l pk_{eval} pkeval​是public的,用于密文计算逻辑 f ( ⋅ ) f(\cdot) f(⋅)的evalute circuit中,但根据所处理数据加解密密钥的不同,可将FHE分为: 1)对称F…

Web后端开发概述环境搭建项目创建servlet生命周期

Web开发概述 web开发指的就是网页向后再让发送请求,与后端程序进行交互 web后端(javaEE)程序需要运行在服务器中 这样前端才可以对其进行进行访问 什么是服务器? 解释1: 服务器就是一款软件,可以向其发送请求,服务器会做出一个响应.可以在服务器中部署文件,让…

【ai】trition:tritonclient.utils.shared_memory 仅支持linux

Can’t find tritonclient.utils.shared_memory on WIN10 #4149yolov4的python客户端 导入以后,windows 的pycharm 就是看不到折腾了很久:SaviorEnv 环境下安装tritonclient[all]也会失败 (base) C:\Users\zhangbin>conda create -n SaviorEnv python=3.8 Collecting pack…

计算机体系结构和指令系统

1.计算机体系结构 - 五大部件 - 冯 诺依曼 计算机的特点 1.计算机有五大部件组成 2.指令和数据以同等地位存储于存储器,可按照地址访问 3.指令和数据用二进制表示 4.指令由操作码和地址码组成 5。存储程序 6.以计算器为中心(输入、输出设备与存储器…

成都市水资源公报(2000-2022年)

数据年限:2000-2022年,无2009年 数据格式:pdf、word、jpg 数据内容:降水量、地表水资源量、地下水资源量、水资源总量、蓄水状况、平原区浅层地下水动态、水资源情况分析、供水量、用水量、污水处理、洪涝干旱等

[XYCTF新生赛]-PWN:EZ1.0?(mips,mips的shellcode利用)

查看保护 查看ida 这里用的是retdec,没安装的可以看这个[CTF]-PWN:mips反汇编工具,ida插件retdec的安装-CSDN博客 这里直接看反汇编貌似看不出什么,所以直接从汇编找 完整exp: from pwn import* context(log_leveldebug,archmip…

【机器学习】在【Pycharm】中的应用:【线性回归模型】进行【房价预测】

专栏:机器学习笔记 pycharm专业版免费激活教程见资源,私信我给你发 python相关库的安装:pandas,numpy,matplotlib,statsmodels 1. 引言 线性回归(Linear Regression)是一种常见的统计方法和机器学习算法&a…

Nature Climate Change | 中国科学院地理资源所吴朝阳课题组发表生物多样性调控植被物候的研究成果!

本文首发于“生态学者”微信公众号! 植被春季物候对气候变化的响应通常是通过测量其温度敏感性(ST,温度每升高1度,植被提前展叶的天数)来量化。ST是植被在当地历史气候环境的选择压力下演化形成的最优策略,…

基于GRU自回归解码模拟人类股票交易实现高胜率

这里是基于encoder-decoder和注意力机制 模型代码,sigmoid对资产进行调仓。训练直接使用收益作为优化函数 import torch import torch.nn as nn from dataloader import create_dataloadersclass Attention(nn.Module):def __init__(self, hidden_dim):super(Attention, self…

C++集中营笔记(1)第一节课和第二节课

第一节课linux的使用 1.Linux 常用命令 [chenbogon ~]$ cd ~ [chenbogon ~]$ cd /home [chenbogon home]$ mkdir cpp-test mkdir: cannot create directory ‘cpp-test’: Permission denied [chenbogon home]$ sudo mkdir cpp-testWe trust you have received the usual lec…

Leetcode 78 数组子集

题目描述: 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的 子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,2,3] 输出&#xff1…

pyqt 文件浏览列表视图和图标视图

pyqt 文件浏览列表视图和图标视图 目的效果代码 目的 使用pyqt实现文件浏览列表视图和图标视图,像电脑文件浏览一样。如下图所示。 效果 代码 import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QWidget, QToolBar, QAction, Q…

商城自动化测试实战 —— 登录+滑块验证

hello大家好,我是你们的小编! 本商城测试项目采取PO模型和数据分离式架构,采用pytestseleniumjenkins结合的方式进行脚本编写与运行,项目架构如下: 1、创建项目名称:code_shopping,创建所需项目…

基于单片机光纤测距系统的设计与实现

摘要 : 光纤由于其频带宽 、 损耗低及抗干扰能力强等优点已被广泛地应用在通信 、 电子及电力方面 , 是我们生产生活中必不可少的媒介。 在实际的光纤实验 、 安装 、 运营和维护工作中 , 一种精准 、 轻便和易操作的光纤测距系统显得尤为重…

粉色专业月子会所服务网站源码pbootcms模板

模板介绍 随着时代的发展,月子中心这个产业已越来越盛行,小编挣了一款粉色专业月子会所服务网站源码pbootcms模板供大家下载,适合家政、月嫂服务、母婴护理、月子会所、保姆服务等相关业务,响应式自适应的源码下载设计让您快速编…

百度网盘下载速度慢的解决办法

目录 一、背景 二、解决办法 1、点击三个竖点,再点设置 2、点击传输,再点击去开启该功能 3、点击同意,开启优化速率 三、结果 四、备注 一、背景 当你不是百度网盘会员时,你在使用百度网盘下载时,是否下载速度太…

B站CEO陈睿:超8000万用户在看AI内容

AI圈最近又发生了啥新鲜事? 该栏目以周更频率总结国内外前沿AI动态,感兴趣的可以点击订阅合集以及时收到最新推送 B站CEO陈睿:每月超过8000万用户在平台看AI内容 B站15周年庆上B站董事长兼CEO陈睿发表演讲,公布了B站上AI的内容…