统计分析利器:深入解读卡方检验与单因素方差分析的应用案例【练习题】

news2024/11/24 8:51:26

一、卡方检验

1.对400人进行问卷调查,询问对于教学改革的看法,调查结果如下表所示,请问不同学科不同性别的人意见是否相同。

学科

男生

女生

工科

80

40

理科

120

160

(性别,学科均无序分类=>卡方检验)(频数->加权个案)

1. 数据输入

首先,将数据输入到SPSS中。数据表格如下:

学科性别人数
工科男生80
工科女生40
理科男生120
理科女生160

2. 数据录入SPSS

  1. 打开SPSS。
  2. 在数据视图中,输入变量名:学科性别人数
  3. 输入上表中的数据。

3. 变量定义

在变量视图中,定义每个变量的属性:

  • 学科性别设为数值,定义好值。
  • 人数设为数值(Numeric)。

4. 进行卡方检验

  1. 在菜单栏中选择分析(Analyze)。

  2. 选择描述统计(Descriptive Statistics),然后选择交叉表(Crosstabs)。

  3. 在弹出的对话框中:

    • 学科拖到(Row(s))区域。
    • 性别拖到(Column(s))区域。
    • 人数拖到(Layer 1 of 1)区域。

4.点击右下角的统计量(Statistics)按钮,勾选卡方(Chi-square),然后点击继续。

5.点击右下角的单元格(Cells)按钮,勾选观测值(Observed)和期望值(Expected),然后点击继续(Continue)。

6.点击确定(OK),SPSS将会生成结果。

5. 结果解释

结果会显示在输出窗口中,主要关注以下几点:

  • 卡方检验表格:

    • 查看Pearson 卡方显著性(Asymp. Sig. (2-sided))值(即p值)。
    • 如果p值小于0.05,则认为不同学科和性别的学生对教学改革的看法存在显著差异。

  • 交叉表(Crosstabulation)表格:

    • 查看观测频数(Observed N)和期望频数(Expected N)的差异。

6. 具体结果解释

1. 样本数和有效个案数

在数据中,我们看到不同样本数(40, 80, 120, 160和400)的情况下,对皮尔逊卡方统计量进行了分析。所有样本的有效个案数为400。

2. 皮尔逊卡方统计量

总计部分的皮尔逊卡方统计量为19.048,自由度为1,渐进显著性(双侧)为.000。这意味着在这些数据中,我们有非常强的证据拒绝原假设(即变量是独立的),认为变量之间有显著关系。皮尔逊卡方值为19.048,且其显著性水平(p值)为.000,这表明结果在统计上显著。

3. 连续性修正

连续性修正是专门为2x2表格计算的修正统计量。在本例中,连续性修正的卡方统计量为18.107,自由度为1,显著性水平为.000。这进一步支持了皮尔逊卡方的结论,表明变量之间存在显著关系。

4. 似然比

似然比检验是一种与卡方检验类似的检验方法,但它基于最大似然估计。在这组数据中,似然比为19.326,自由度为1,显著性水平为.000。这同样表明了变量之间存在显著关系。

5. 费希尔精确检验

费希尔精确检验是一种非参数检验,特别适用于小样本数据。在这里,费希尔精确检验的显著性(双侧和单侧)均为.000,进一步确认了变量之间的显著关系。

6. 线性关联

线性关联检验值为19.000,自由度为1,显著性水平为.000。这也是对变量间显著关系的有力支持。

  1. 皮尔逊卡方检验、连续性修正、似然比检验、费希尔精确检验和线性关联检验均表明变量之间存在显著关系。
  2. 所有检验的显著性水平均为.000,意味着结果非常显著。
  3. 数据满足卡方检验的基本要求(期望计数大于5)

二、单因素方差分析

某公司想比较五种销售方法有无显著的效果差异,从应聘人员中随机挑选分为为五组,每组用一种推销方法培训。一段时期后得到各组销售额如下表所示:(有五组,每组为连续性变量=>单因素方差分析)

(1)分析这五种推销方式是否存在显著差异。

(2)绘制相关均值图,并说明利用合适的方法进行多重比较检验,说明那组推销方式最好?

(1)分析五种推销方式是否存在显著差异

数据输入

步骤1:输入数据

  1. 打开SPSS软件。
  2. 在“数据视图”中,手动输入数据。数据格式应该有两列:一列表示组别(可以用1到5表示),一列表示销售额。
组别销售额
120.0
116.8
117.9
121.2
123.9
126.8
122.4
224.9
221.3
222.6
230.2
229.9
222.5
220.7
316.0
320.1
317.3
320.9
322.0
326.8
320.8
417.5
418.2
420.2
417.7
419.1
418.4
416.5
525.2
526.2
526.9
529.3
530.4
529.7
528.3

单因素方差分析

步骤2:执行单因素方差分析

  1. 选择菜单栏中的 分析
  2. 选择 比较均值,然后选择 单因素方差分析
  3. 将“销售额”变量拖到 因变量列表 中。
  4. 将“组别”变量拖到 因子 框中。
  5. 点击 选项 按钮,勾选 描述方差齐性检验,然后点击 继续
  6. 点击 事后 按钮,选择LSD 和 塔姆黑尼,然后点击 继续
  7. 点击 确定 运行分析。

结果解释

运行ANOVA后,您将得到以下几个重要结果:

  1. 描述性统计:显示每组的样本数、均值、标准差等信息。
  2. 方差齐性检验:Levene检验结果,用于检验各组方差是否相等。
  3. 方差分析表
    • 组间:表示各组均值的差异。
    • 组内:表示组内数据的变异。
    • F 值和 Sig.(p值):用于判断是否存在显著差异。

如果 Sig.(p值)小于显著性水平(通常为0.05),则拒绝原假设,认为至少有两组的均值存在显著差异。

(2)绘制相关均值图,并进行多重比较检验

均值图绘制

步骤3:绘制均值图

  1. 选择菜单栏中的 图表
  2. 选择 图表生成器
  3. 在弹出的窗口中,选择 箱形图
  4. 将“销售额”拖到 Y 轴 区域,将“组别”拖到 X 轴 区域。
  5. 点击 确定 绘制箱线图。

多重比较检验

在进行ANOVA分析时,我们已经选择了LSD 和塔姆黑尼 方法进行事后检验。检验将比较每一对组别之间的均值差异,并给出显著性水平。

步骤4:查看多重比较检验结果

  1. 在ANOVA结果窗口中,找到 多重比较 表格。
  2. 查看每对组别之间的比较结果,特别关注 Sig.(p值)。如果 p值小于0.05,则表明这对组别之间的均值差异显著。

解释哪组推销方式最好

多重比较的结果包括LSD(最小显著差异检验)和塔姆黑尼(Tamhane's T2)检验。以下是对这些结果的详细解释:

LSD检验结果

LSD检验比较了每对组之间的均值差异,并指出哪些差异是显著的(显著性水平为0.05)。结果显示如下:

  • 第一组 vs 第二组:均值差异为-3.3000,显著性为0.047。这表明第一组的平均销售额显著低于第二组。
  • 第一组 vs 第五组:均值差异为-6.7143,显著性为0.000。这表明第一组的平均销售额显著低于第五组。
  • 第二组 vs 第三组:均值差异为4.0571,显著性为0.016。这表明第二组的平均销售额显著高于第三组。
  • 第二组 vs 第四组:均值差异为6.3429,显著性为0.000。这表明第二组的平均销售额显著高于第四组。
  • 第二组 vs 第五组:均值差异为-3.4143,显著性为0.041。这表明第二组的平均销售额显著低于第五组。
  • 第三组 vs 第五组:均值差异为-7.4714,显著性为0.000。这表明第三组的平均销售额显著低于第五组。
  • 第四组 vs 第五组:均值差异为-9.7571,显著性为0.000。这表明第四组的平均销售额显著低于第五组。
塔姆黑尼检验结果

塔姆黑尼检验结果用于当组间方差不等时的多重比较。结果如下:

  • 第一组 vs 第五组:均值差异为-6.7143,显著性为0.014。这表明第一组的平均销售额显著低于第五组。
  • 第二组 vs 第四组:均值差异为6.3429,显著性为0.046。这表明第二组的平均销售额显著高于第四组。
  • 第三组 vs 第五组:均值差异为-7.4714,显著性为0.006。这表明第三组的平均销售额显著低于第五组。
  • 第四组 vs 第五组:均值差异为-9.7571,显著性为0.000。这表明第四组的平均销售额显著低于第五组。

哪组推销方式最好

根据均值差异和显著性检验结果,我们可以得出以下结论:

  1. 第五组的推销方式最好:因为第五组的平均销售额显著高于其他所有组。在LSD和塔姆黑尼检验中,所有与第五组的比较中,均显示其销售额显著高于其他组。

  2. 第二组的推销方式次之:在LSD检验中,第二组的平均销售额显著高于第一组、第三组和第四组,且在塔姆黑尼检验中,第二组的销售额显著高于第四组。

具体分析

  • 第一组:相对较差,销售额显著低于第二组和第五组。
  • 第二组:表现较好,销售额显著高于第一组、第三组和第四组,但低于第五组。
  • 第三组:销售额显著低于第二组和第五组。
  • 第四组:销售额显著低于第二组和第五组。
  • 第五组:表现最佳,销售额显著高于所有其他组。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1877484.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SGX系列教程】(五)Intel-SGX 官方示例分析(SampleCode)——RemoteAttestation

文章目录 一.RemoteAttestation原理介绍1.1 远程认证原理1.2 远程认证步骤1.3 远程认证基本流程1.4 IAS通过以下步骤验证报告的签名1.5 关键术语1.6 总结二.源码分析2.1 README2.1.1 README给出的编译流程2.2 重点代码分析2.2.0 主要代码模块交互流程分析2.2.1 isv_app文件夹2.…

Leetcode刷题笔记 | 二叉树基本性质 | 一天的题量 | 5道题目 | 深度优先搜索 | 广度优先搜索 | 递归 | 遍历

🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 📌本期毛毛张分享的是LeetCode关于二叉树🌲的性质的一些基础题,做这些题目的本质还是遍历二叉树🏃‍➡️的过程&#…

uniapp+php开发的全开源多端微商城完整系统源码.

uniappphp开发的全开源多端微商城完整系统源码. 全开源的基础商城销售功能的开源微商城。前端基于 uni-app,一端发布多端通用。 目前已经适配 H5、微信小程序、QQ小程序、Ios App、Android App。 采用该资源包做商城项目,可以节省大量的开发时间。 这…

Docker部署Dillinger个人文本编辑器

Docker部署Dillinger个人文本编辑器 一、Dillinger介绍1.1 Dillinger简介1.2 Dillinger使用场景 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、拉取Dillinger镜像五、部署Dill…

前后端分离的后台管理系统开发模板(带你从零开发一套自己的若依框架)上

前言: 目前,前后端分离开发已经成为当前web开发的主流。目前最流行的技术选型是前端vue3后端的spring boot3,本次。就基于这两个市面上主流的框架来开发出一套基本的后台管理系统的模板,以便于我们今后的开发。 前端使用vue3ele…

YOLO网络结构特点收录

YOLO网络结构特点收录 YOLO(You Only Look Once)网络结构随着版本迭代不断进化,以下是一些关键版本的网络结构特点概述: YOLOv1 输入:将图像调整至固定尺寸,如448x448像素。骨干网络:初期版本…

Leetcode3190. 使所有元素都可以被 3 整除的最少操作数

Every day a Leetcode 题目来源:3190. 使所有元素都可以被 3 整除的最少操作数 解法1:遍历 遍历数组,累加最少操作数,即 min(num % 3, 3 - num % 3)。 代码: /** lc appleetcode.cn id3190 langcpp** [3190] 使所…

ElementUI框架搭建及组件使用

前言: 当开始使用ElementUI框架来搭建网站或Web应用程序时,了解框架的基本结构和组件的使用是至关重要的。ElementUI是一个基于Vue.js的框架,提供了丰富的UI组件和工具,可以帮助开发人员快速构建现代化的用户界面。 在本文中,我…

电脑提示vcomp140.dll丢失的几种有效的解决方法,轻松搞定dll问题

在电脑使用过程中,我们可能会遇到一些错误提示,其中之一就是找不到vcomp140.dll。那么,究竟什么是vcomp140.dll呢?为什么会出现找不到vcomp140.dll的情况呢?本文将从vcomp140.dll的定义、常见原因、对电脑的影响以及解…

[鹏城杯 2022]babybit

发现一个压缩包提取出来提取出来两个压缩包里面是注册表使用MiTeC Windows Registry Recovery 恢复注册表 flag在ROOT\ControlSet001\Control\FVEStats里的OsvEncryptInit和OsvEncryptComplete中 NSSCTF{2022/6/13_15:17:39_2022/6/13_15:23:46}

Nuxtjs3教程

起步 官方文档 官方目录结构 安装 npx nuxi@latest init <project-name>后面跟着提示走就行 最后yarn run dev 启动项目访问localhost:3000即可 路由组件 app.vue为项目根组件 <nuxt-page />为路由显示入口 将app.vue更改内容如下 <template><d…

PostgreSQL 17 Beta 1 发布!

PostgreSQL 全球开发小组宣布&#xff0c;PostgreSQL 17 的第一个测试版本现已可供下载。此版本包含 PostgreSQL 17 正式发布时将提供的所有功能的预览&#xff0c;但测试期间版本的某些细节可能会发生变化。 #PG培训#PG考试#postgresql培训#postgresql考试#postgresql认证 您…

【Qt+opencv】编译、配置opencv

文章目录 前言下载opencv编译opencvmingw版本 总结 前言 OpenCV&#xff08;Open Source Computer Vision Library&#xff09;是一个开源的计算机视觉和机器学习软件库&#xff0c;它包含了超过2500个优化的算法。这些算法可以用来检测和识别面部&#xff0c;识别对象&#x…

动手学深度学习(Pytorch版)代码实践 -计算机视觉-47转置卷积

47转置卷积 import torch from torch import nn from d2l import torch as d2l# 输入矩阵X和卷积核矩阵K实现基本的转置卷积运算 def trans_conv(X, K):h, w K.shapeY torch.zeros((X.shape[0] h - 1, X.shape[1] w - 1))for i in range(X.shape[0]):for j in range(X.shap…

Python_Socket

Python Socket socket 是通讯中的一种方式&#xff0c;主要用来处理客户端与伺服器端之串连&#xff0c;只需要protocol、IP、Port三项目即可进行网路串连。 Python套件 import socketsocket 常用函式 socket.socket([family], [type] , [proto] ) family: 串接的类型可分为…

pdf怎么转换成jpg,本地转换还是在线转换?

PDF&#xff08;Portable Document Format&#xff09;和JPG&#xff08;Joint Photographic Experts Group&#xff09;这两种文件格式在我们的日常生活和工作中扮演着举足轻重的角色。PDF因其跨平台、保持原样性强的特点&#xff0c;被广泛应用于文件传输和存储&#xff1b;而…

快速修复mfc100u.dll丢失解决方案

相连文章&#xff1a;SecureCRT的安装破解 [详细过程2024] 有小伙伴向我反馈在打开SecureFX注册机之后显示【mfc100u.dll找不到】重装之后也没有用&#xff0c;这个是因为Microsoft Visual C的运行时组件和库出现了错误&#xff0c;直接选择重新安装就可以 出现这种情况的原因…

识图生成代码:通义千问vsGPt4o,有点小崩

今日对比一下通义千问和GPt4o&#xff0c;在通过识别图片然后去生成前端代码 在当今ai的时代&#xff0c;通过ai去生成页面的代码可以很大的提高我们的开发效率下面是我们要求的生成的图片截图&#xff0c;这是掘金的榜单 效果对比 首先我们使用通义千问&#xff0c;让他去帮我…

LabVIEW在机器人研究所中的应用

机器人研究所致力于机器人技术的研究与开发&#xff0c;涵盖工业机器人、服务机器人、医疗机器人等多个领域。研究所需要一个高效、灵活的实验控制和数据采集系统&#xff0c;以进行复杂的机器人实验&#xff0c;并对实验数据进行实时处理和分析。 项目需求 实时控制与监控&am…

Linux中使用网络文件系统NFS挂载远程目录,对远程文件的本地化操作

目录 一、NFS及其在linux系统中的挂载 1、NFS概述 2、NFS挂载及其作用 &#xff08;1&#xff09;资源共享 &#xff08;2&#xff09;简化数据管理 &#xff08;3&#xff09;提高数据可用性 &#xff08;4&#xff09;灵活性 &#xff08;5&#xff09;访问控制 &am…