昇思25天学习打卡营第11天 | ResNet50迁移学习

news2024/11/26 3:54:57
内容介绍:

在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的基础数据集上训练得到一个预训练模型,然后使用该模型来初始化网络的权重参数或作为固定特征提取器应用于特定的任务中。本章将使用迁移学习的方法对ImageNet数据集中的狼和狗图像进行分类。

具体内容:

1. 导包

from download import download
import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import matplotlib.pyplot as plt
import numpy as np
from typing import Type, Union, List, Optional
from mindspore import nn, train
from mindspore.common.initializer import Normal
from mindspore import load_checkpoint, load_param_into_net
import os
import time

2. 下载数据集

dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"

download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

3. 加载数据集

狼狗数据集提取自ImageNet分类数据集,使用`mindspore.dataset.ImageFolderDataset`接口来加载数据集,并进行相关图像增强操作。  

首先执行过程定义一些输入:

batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 5                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数

# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"

# 创建训练数据集

def create_dataset_canidae(dataset_path, usage):
    """数据加载"""
    data_set = ds.ImageFolderDataset(dataset_path,
                                     num_parallel_workers=workers,
                                     shuffle=True,)

    # 数据增强操作
    mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
    std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
    scale = 32

    if usage == "train":
        # Define map operations for training dataset
        trans = [
            vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
            vision.RandomHorizontalFlip(prob=0.5),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]
    else:
        # Define map operations for inference dataset
        trans = [
            vision.Decode(),
            vision.Resize(image_size + scale),
            vision.CenterCrop(image_size),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]


    # 数据映射操作
    data_set = data_set.map(
        operations=trans,
        input_columns='image',
        num_parallel_workers=workers)


    # 批量操作
    data_set = data_set.batch(batch_size)

    return data_set


dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

4. 数据集可视化

mindspore.dataset.ImageFolderDataset接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator 接口创建数据迭代器,使用 next 迭代访问数据集。本章中 batch_size 设为18,所以使用 next 一次可获取18个图像及标签数据。

data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]

print("Tensor of image", images.shape)
print("Labels:", labels)
# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}

plt.figure(figsize=(5, 5))
for i in range(4):
    # 获取图像及其对应的label
    data_image = images[i].asnumpy()
    data_label = labels[i]
    # 处理图像供展示使用
    data_image = np.transpose(data_image, (1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    data_image = std * data_image + mean
    data_image = np.clip(data_image, 0, 1)
    # 显示图像
    plt.subplot(2, 2, i+1)
    plt.imshow(data_image)
    plt.title(class_name[int(labels[i].asnumpy())])
    plt.axis("off")

plt.show()

5. 构建ResNet50网络

weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)
class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支

        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out
class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):

        identity = x  # shortscuts分支

        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)

        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out
def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支


    if stride != 1 or last_out_channel != channel * block.expansion:

        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])

    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))

    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):

        layers.append(block(in_channel, channel))

    return nn.SequentialCell(layers)
class ResNet(nn.Cell):
    def __init__(self, block: Type[Union[ResidualBlockBase, ResidualBlock]],
                 layer_nums: List[int], num_classes: int, input_channel: int) -> None:
        super(ResNet, self).__init__()

        self.relu = nn.ReLU()
        # 第一个卷积层,输入channel为3(彩色图像),输出channel为64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, weight_init=weight_init)
        self.norm = nn.BatchNorm2d(64)
        # 最大池化层,缩小图片的尺寸
        self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        # 各个残差网络结构块定义,
        self.layer1 = make_layer(64, block, 64, layer_nums[0])
        self.layer2 = make_layer(64 * block.expansion, block, 128, layer_nums[1], stride=2)
        self.layer3 = make_layer(128 * block.expansion, block, 256, layer_nums[2], stride=2)
        self.layer4 = make_layer(256 * block.expansion, block, 512, layer_nums[3], stride=2)
        # 平均池化层
        self.avg_pool = nn.AvgPool2d()
        # flattern层
        self.flatten = nn.Flatten()
        # 全连接层
        self.fc = nn.Dense(in_channels=input_channel, out_channels=num_classes)

    def construct(self, x):

        x = self.conv1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.max_pool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avg_pool(x)
        x = self.flatten(x)
        x = self.fc(x)

        return x


def _resnet(model_url: str, block: Type[Union[ResidualBlockBase, ResidualBlock]],
            layers: List[int], num_classes: int, pretrained: bool, pretrianed_ckpt: str,
            input_channel: int):
    model = ResNet(block, layers, num_classes, input_channel)

    if pretrained:
        # 加载预训练模型
        download(url=model_url, path=pretrianed_ckpt, replace=True)
        param_dict = load_checkpoint(pretrianed_ckpt)
        load_param_into_net(model, param_dict)

    return model


def resnet50(num_classes: int = 1000, pretrained: bool = False):
    "ResNet50模型"
    resnet50_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/resnet50_224_new.ckpt"
    resnet50_ckpt = "./LoadPretrainedModel/resnet50_224_new.ckpt"
    return _resnet(resnet50_url, ResidualBlock, [3, 4, 6, 3], num_classes,
                   pretrained, resnet50_ckpt, 2048)

6. 固定特征

net_work = resnet50(pretrained=True)

# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head

# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool

# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():
    if param.name not in ["fc.weight", "fc.bias"]:
        param.requires_grad = False

# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')


def forward_fn(inputs, targets):
    logits = net_work(inputs)
    loss = loss_fn(logits, targets)

    return loss

grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)

def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss

# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})

7. 训练

dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

num_epochs = 5

# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best-freezing-param.ckpt"
# 开始循环训练
print("Start Training Loop ...")

best_acc = 0

for epoch in range(num_epochs):
    losses = []
    net_work.set_train()

    epoch_start = time.time()

    # 为每轮训练读入数据
    for i, (images, labels) in enumerate(data_loader_train):
        labels = labels.astype(ms.int32)
        loss = train_step(images, labels)
        losses.append(loss)

    # 每个epoch结束后,验证准确率

    acc = model1.eval(dataset_val)['Accuracy']

    epoch_end = time.time()
    epoch_seconds = (epoch_end - epoch_start) * 1000
    step_seconds = epoch_seconds/step_size_train

    print("-" * 20)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, sum(losses)/len(losses), acc
    ))
    print("epoch time: %5.3f ms, per step time: %5.3f ms" % (
        epoch_seconds, step_seconds
    ))

    if acc > best_acc:
        best_acc = acc
        if not os.path.exists(best_ckpt_dir):
            os.mkdir(best_ckpt_dir)
        ms.save_checkpoint(net_work, best_ckpt_path)

print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)

8. 可视化

def visualize_model(best_ckpt_path, val_ds):
    net = resnet50()
    # 全连接层输入层的大小
    in_channels = net.fc.in_channels
    # 输出通道数大小为狼狗分类数2
    head = nn.Dense(in_channels, 2)
    # 重置全连接层
    net.fc = head
    # 平均池化层kernel size为7
    avg_pool = nn.AvgPool2d(kernel_size=7)
    # 重置平均池化层
    net.avg_pool = avg_pool
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    model = train.Model(net)
    # 加载验证集的数据进行验证
    data = next(val_ds.create_dict_iterator())
    images = data["image"].asnumpy()
    labels = data["label"].asnumpy()
    class_name = {0: "dogs", 1: "wolves"}
    # 预测图像类别
    output = model.predict(ms.Tensor(data['image']))
    pred = np.argmax(output.asnumpy(), axis=1)

    # 显示图像及图像的预测值
    plt.figure(figsize=(5, 5))
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels[i] else 'red'
        plt.title('predict:{}'.format(class_name[pred[i]]), color=color)
        picture_show = np.transpose(images[i], (1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')

    plt.show()
visualize_model(best_ckpt_path, dataset_val)

ResNet50,是一个在图像识别领域取得显著成果的深度卷积神经网络。

通过将ResNet50在大型数据集上预训练得到的权重和特征提取能力迁移到自己的任务中,我能够迅速地在新的数据集上取得不错的性能。这不仅节省了我大量的时间和计算资源,也提高了模型的泛化能力。

ResNet50的网络结构展示了深度学习的强大魅力。其残差连接的设计有效解决了深度神经网络在训练过程中出现的梯度消失和模型退化问题,使得网络能够更深地挖掘数据的特征信息。在迁移学习中,我能够充分利用ResNet50的这一优势,提取出更加丰富和准确的特征。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1875903.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法力扣刷题记录 二十三【151.翻转字符串里的单词】

前言 字符串篇,继续。 记录 二十三【151.翻转字符串里的单词】 – 一、题目阅读 给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开。 返回 单词 顺序颠倒且 单词…

【Python报错】已解决 ModuleNotFoundError: No module named ‘transformers‘

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 ModuleNotFoundError: No module named ‘transformers’ 是一个常见的错误,它表明你的Python环境中没有安装t…

2023阿里巴巴全球数学竞赛决赛中的LLM背景题解析(应用与计算数学部分第2题)...

早点关注我,精彩不错过! 最近闹得沸沸扬扬的姜萍事件果真又成了世界就是个草台班子的有力论据。无论真相如何,各自心怀鬼胎,自有策略的合作看起来就一定是一场场的闹剧。 无意作过多评论,也绝不妄下言论,就…

Unity之自定义Text组件默认属性值

内容将会持续更新,有错误的地方欢迎指正,谢谢! Unity之自定义Text组件默认属性值 TechX 坚持将创新的科技带给世界! 拥有更好的学习体验 —— 不断努力,不断进步,不断探索 TechX —— 心探索、心进取!…

硬件实用技巧:刚挠板pcb是什么

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/140060334 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…

SQLServer 表值构造函数 (Transact-SQL)

在 SQL Server 中,表值构造函数(Table Value Constructor, TVC)是一种用于在单个语句中插入多行数据到表中的语法。它允许你以行内表值表达式(row-valued expression)的形式指定多行数据,并将这些数据作为一…

基于weixin小程序周边美食系统的设计

管理员账户功能包括:系统首页,个人中心,用户管理,美食店铺管理,菜品分类管理,标签管理,菜品信息管理,系统管理 微信端账号功能包括:系统首页,美食店铺&#x…

ROS2使用Python创建服务提供者、消费者

1.创建服务提供者 ros2 pkg create example_service_rclpy --build-type ament_python --dependencies rclpy example_interfaces --node-name service_server_02 service_server_02.py 代码 #!/usr/bin/env python3 import rclpy from rclpy.node import Node # 导入接口 …

办公软件WPS与Office的区别

临近计算机考试很多同学在纠结我是报wps好?还是ms office好?下面就来详细说说。 1、wps属于国内金山公司的办公软件,里面包含word、Excel和PPT。考试是2021年开始的! 2、MS(Microsoft 微软) office属于美…

web安全渗透测试十大常规项(一):web渗透测试之深入JAVA反序列化

渗透测试之PHP反序列化 1. Java反序列化1.1 FastJson反序列化链知识点1.2 FastJson反序列化链分析1.3.1 FastJson 1.2.24 利用链分析1.3.2 FastJson 1.2.25-1.2.47 CC链分析1.3.2.1、开启autoTypeSupport:1.2.25-1.2.411. Java反序列化 1.1 FastJson反序列化链知识点 1、为什…

线程池技术实现及参数工作流程原理

一.什么是线程池 线程池其实就是一种多线程处理形式,处理过程中可以将任务添加到队列中,然后在创建线程后自动启动这些任务。这里的线程就是我们前面学过的线程,这里的任务就是我们前面学过的实现了Runnable或Callable接口的实例对象。 为什么使用多线程…

【RT摩拳擦掌】RT云端测试之百度天工物接入构建(设备型)

【RT摩拳擦掌】RT云端测试之百度天工物接入构建(设备型) 一, 文档介绍二, 物接入IOT Hub物影子构建2.1 创建设备型项目2.2 创建物模型2.3 创建物影子 三, MQTT fx客户端连接云端3.1 MQTT fx配置3.2 MQTT fx订阅3.3 MQT…

修改docker中mongodb容器的时区

假设容器名称为mongodb,设置时区为上海时区的命令为: docker exec -it mongodb bash -c "ln -snf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo Asia/Shanghai > /etc/timezone"验证时区更改: docker e…

Eigen中关于四元数的常用操作

四元数(Quaternion)是一种数学工具,广泛用于计算机图形学、机器人学和物理模拟中,特别适合处理三维旋转。Eigen库是一个高性能的C数学库,提供了丰富的线性代数功能,其中就包括对四元数的支持。 1. 为什么选…

element ui form 表单验证

表单验证方法 在el-form元素上总体设置校验规则rules&#xff0c;下面是官方案例 <el-form :model"ruleForm" :rules"rules" ref"ruleForm" label-width"100px" class"demo-ruleForm"><el-form-item label"…

基于Java游戏售卖网站详细设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;…

从零开始学Spring Boot系列-集成Spring Security实现用户认证与授权

在Web应用程序中&#xff0c;安全性是一个至关重要的方面。Spring Security是Spring框架的一个子项目&#xff0c;用于提供安全访问控制的功能。通过集成Spring Security&#xff0c;我们可以轻松实现用户认证、授权、加密、会话管理等安全功能。本篇文章将指导大家从零开始&am…

Qt Creator创建一个用户登录界面

目录 1 界面设计 2 代码 2.1 登录界面 2.2 注册界面 2.3 登陆后的界面 3 完整资源 这里主要记录了如何使用Qt Creator创建一个用户登录界面&#xff0c;能够实现用户的注册和登录功能&#xff0c;注册的用户信息存储在了一个文件之中&#xff0c;在登录时可以比对登录信息…

模型预测控制:线性MPC

模型预测控制&#xff1a;线性MPC 模型预测控制&#xff08;Model Predictive Control, MPC&#xff09;是一种广泛应用于工业过程控制和自动驾驶等领域的先进控制技术。MPC通过在线解决优化问题来计算控制输入&#xff0c;从而实现系统的最优控制。本文将介绍线性MPC的系统模…

C# 实现websocket双向通信

&#x1f388;个人主页&#xff1a;靓仔很忙i &#x1f4bb;B 站主页&#xff1a;&#x1f449;B站&#x1f448; &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;C# &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff…