[数据结构】——七种常见排序

news2024/11/24 8:45:11

文章目录

    • 前言
  • 一.冒泡排序
  • 二.选择排序
  • 三.插入排序
  • 四.希尔排序
  • 五.堆排序
  • 六.快速排序
    • hoare
    • 挖坑法
    • 前后指针
    • 快排递归实现:
    • 快排非递归实现:
  • 七、归并排序
    • 归并递归实现:
    • 归并非递归实现:
  • 八、各个排序的对比图

前言

  • 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小, 递增或递减的排列起来的操作。
  • 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

接下来会涉及到的排序
在这里插入图片描述

这里写了一个测试排序性能的代码,方便我们观察各个排序的好坏

//测试排序的性能
void TestOP()
{
	srand((unsigned)time(NULL));
	//N的数值手动改变,以判断性能的好坏
	const int N = 100000;
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	int* a5 = (int*)malloc(sizeof(int) * N);
	int* a6 = (int*)malloc(sizeof(int) * N);
	int* a7 = (int*)malloc(sizeof(int) * N);

	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand() + i;
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
		a7[i] = a1[i];
	}

	int begin1 = clock();
	InsertSort(a1, N);
	int end1 = clock();

	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();

	int begin3 = clock();
	SelectSort(a3, N);
	int end3 = clock();

	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();

	int begin5 = clock();
	QuickSort(a5, 0, N - 1);
	int end5 = clock();

	int begin6 = clock();
	MergeSort(a6, N);
	int end6 = clock();

	int begin7 = clock();
	BubbleSort(a7, N);
	int end7 = clock();

	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n", end2 - begin2);
	printf("SelectSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n", end4 - begin4);
	printf("QuickSort:%d\n", end5 - begin5);
	printf("MergeSort:%d\n", end6 - begin6);
	printf("BubbleSort:%d\n", end7 - begin7);

	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
	free(a7);
}

还有交换函数

//交换函数
void Swap(int* x, int* y)
{
 int tmp = *x;
 *x = *y;
 *y = tmp;
}


以下排序默认是升序,即从小到大的顺序

一.冒泡排序

冒泡的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性

在这里插入图片描述

从图中我们可以看出,冒泡排序其实就是一种选择排序,即走一次,找到最大的数放在最右边,接下来要排序的数据就少了一个,再走一次,找到此时最大的数放在此时的最右边,接下来不断重复此步骤,数据就有序了

//冒泡排序
void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int flag = 0;
		for (int j = 0; j < n - 1 - i; j++)
		{
			if (a[j] > a[j + 1])
			{
				Swap(&a[j], &a[j + 1]);
				flag = 1;
			}
		}
		if (flag == 0)
		{
			return;
		}
	}
}

虽然我们使用了flag进行了优化,使冒泡排序在最好的情况下的时间复杂度位O(N),但是实际上冒泡排序只有教学意义,没有实践意义,效率非常低
在十万个数据下面,冒泡走了5s,而在一百万数据下面,走了接近1min了,可见效率是如此的低下

在这里插入图片描述
在这里插入图片描述

二.选择排序

选择排序的时间复杂度是O(N^2),空间复杂度是O(1),具有不稳定性

在这里插入图片描述

从图中我们可以清楚的看到,选择排序每走一次,找到最大或者最小的数据放在最右边或者最左边,然后减少排序的个数,以此类推完成排序

这个排序方法可以优化一下,即走一次找到最小的同时找到最大的

//选择排序
void SelectSort(int* a, int n)
{
 int begin = 0;
 int end = n - 1;
 while (begin < end)
 {
  int mini = begin;
  int maxi = begin;
  for (int i = begin + 1; i <= end; i++)
  {
   if (a[i] < a[mini])
   {
    mini = i;
   }
   if (a[i] > a[maxi])
   {
    maxi = i;
   }
  }
  Swap(&a[begin], &a[mini]);
  if (maxi == begin)
  {
   maxi = mini;
  }
  Swap(&a[end], &a[maxi]);
  begin++;
  end--;
 }
}

选择排序即没有实际意义,也没有教学意义,效率低下
在十万个数据下面,选择走了8s,而在一百万数据下面,走了接近15min了,效率不行

在这里插入图片描述
在这里插入图片描述

三.插入排序

插入排序的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性
在这里插入图片描述

插入排序的思路就是假设在[0,end]是有序的数据,在end+1的位置上插入一个新的数据,用tmp保存插入的数据。
如果end位置上的值大于tmp,end就减1,比较此时end位置上的值与tmp的大小
如果end位置上的值小于tmp,退出循环,将tmp赋给end + 1 位置上的值

//插入排序
void InsertSort(int* a, int n)
{
 for (int i = 0; i < n - 1; i++)
 {
  int end = i;
  //[0,end]是有序的,插入[end+1]数据
  int tmp = a[end + 1];
  while (end >= 0)
  {
   if (a[end] > tmp)
   {
    a[end + 1] = a[end];
    end--;
   }
   else
   {
    break;
   }
  }
  a[end + 1] = tmp;
 }
}

虽然插入排序的时间复杂度是O(N^2),但是它具有实践意义

在十万个数据下面,走了1s,在一百万数据下面,走了16s了,可见效率是还可以

在这里插入图片描述

在这里插入图片描述

四.希尔排序

希尔排序的时间复杂度是O(N^1.3),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。

希尔排序的思想:

  1. 预排序:先分gap,在各自的组内进行插入排序
  2. 插入排序:排好序后,减小gap的值,再次进行预排序,直到gap = 1,进行插入排序,这样数据就有序了

假设gap = 3,将原数据分成3组,那么第一趟预排序的结果为下图
在这里插入图片描述
可以看到在走了一趟后的数据,比原始数据接近有序,这就是希尔排序的优点

//希尔排序
void ShellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		//多组一起走
		for (int i = 0; i < n-gap; i++)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

在十万个数据下面,希尔走了31ms,在一百万数据下面,走了264ms,可见效率还是很快的

在这里插入图片描述
在这里插入图片描述

五.堆排序

堆排序的时间复杂度是O(NlogN),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。
  2. 将其与末尾元素进行交换,此时末尾就为最大值。
  3. 然后将剩余n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。 如此反复执行,便能得到一个有序序列了。
//向下调整法
void AdjustDown(int* a, int n, int parent)
{
	int child = 2 * parent + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else
		{
			break;
		}
	}
}

//堆排序
void HeapSort(int* a, int n)
{
	//创建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	//排序
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

在十万个数据下面,堆排走了45ms,在一百万数据下面,走了473ms,效率还可以
在这里插入图片描述
在这里插入图片描述

六.快速排序

快速排序的平均时间复杂度是O(NlogN),但是在最坏情况下有可能是O(N^2),空间复杂度是O(logN)~O(N),不具有稳定性
在这里插入图片描述

快速排序(Quick Sort)是一种常用的排序算法。快速排序的基本思想是通过选择一个基准元素,将数组分为两部分,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素。然后,对左右两部分分别进行快速排序,直到整个数组有序。

但是当数组已经有序时是最坏情况,快速排序的时间复杂度可能会达到O(N^2)。但是,在大多数情况下,快速排序的时间复杂度都非常接近O (NlogN)

快速排序优化的方法:

1.三数取中

可以看到假定最左边的数作为基准元素,会不准确,因为有可能是最大的数也有可能是最小的数,影响效率,我们可以选择三个数中间的数来作为基准元素

//三数取中法  left  midi  right
int GetMidi(int* a,int left,int right)
{
	int midi = (left + right) / 2;
	if (a[left] > a[midi])
	{
		if (a[midi] >= a[right])
		{
			return midi;
		}
		else if (a[left] < a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else
	{
		if (a[midi] <= a[right])
		{
			return midi;
		}
		else if (a[left] > a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

2.小区间优化

由于快速排序要递归数据区间,只要递归就要消耗空间,那么当数据区间比较小时,可以用插入排序,不用在递归了

//小区间排序 -> 插入排序
if ((right - left + 1) < 10)
{
	//注意数组取的位置和数组的长度
	InsertSort(a+left, right - left + 1);
}

快速排序有三种排序方法:

hoare

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
此时,数据6已经排好了,只需要递归它的左边与右边进行排序即可

// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{
	//三数取中
	int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);
	int keyi = left;

	int begin = left;
	int end = right;
	while (begin < end)
	{
		while (begin < end && a[end] >= a[keyi])
		{
			end--;
		}
		while (begin < end && a[begin] <= a[keyi])
		{
			begin++;
		}
		Swap(&a[begin], &a[end]);
	}
	Swap(&a[keyi], &a[begin]);
	return begin;
}

挖坑法

在这里插入图片描述
在这里插入图片描述

// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{
	//三数取中
	int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);
	int key = a[left];

	int begin = left;
	int end = right;
	while (begin < end)
	{
		while (begin < end && a[end] >= key)
		{
			end--;
		}
		a[begin] = a[end];
		while (begin < end && a[begin] <= key)
		{
			begin++;
		}
		a[end] = a[begin];
	}
	a[begin] = key;
	return begin;
}

前后指针

在这里插入图片描述
在这里插入图片描述

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
	//三数取中
	int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);
	int keyi = left;

	int prev = left;
	int cur = prev + 1;
	while (cur <= right)
	{
		if (a[cur] < a[keyi] && ++prev != cur)
		{
			Swap(&a[cur], &a[prev]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	return prev;
}

快排递归实现:

以上三种方法针对的是每一次排序,我们还需要递归剩下的区间来完成数据的有效

void QuickSort(int* a, int left, int right)
{
	//[left,right]是闭区间
	if (left >= right)
	{
		return;
	}
	//小区间排序 -> 插入排序
	if ((right - left + 1) < 10)
	{
		//注意数组取的位置和数组的长度
		InsertSort(a+left, right - left + 1);
	}
	else
	{
		//随便选择一种排序方法即可
		int keyi = PartSort3(a,left,right);
		//[left,keyi-1] keyi [keyi+1,right]
		//递归左边与右边
		QuickSort(a, left, keyi - 1);
		QuickSort(a, keyi + 1, right);
	}
}

在十万个数据下面,快速排序递归方法走了7ms,在一百万数据下面,走了80ms,可见效率非常快

在这里插入图片描述

在这里插入图片描述

快排非递归实现:

众所周知,递归会在栈上开辟空间,当递归的深度很大时,会导致栈溢出,这时我们可以把快速排序改成用非递归的形式实现

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

现在我们利用栈来实现,这里的栈是数据结构里面的栈。因为内存的栈的空间很小,而堆的空间很大,数据结构的栈就是在堆上开辟的

在这里插入图片描述

// 快速排序 非递归实现 
//利用栈来实现
void QuickSortNonR(int* a, int left, int right)
{
	ST st;
	STInit(&st);
	STPush(&st, right);
	STPush(&st, left);
	while (!STEmpty(&st))
	{
		int begin = STTop(&st);
		STPop(&st);
		int end = STTop(&st);
		STPop(&st);

		int keyi = PartSort3(a, begin, end);
		//[begin,keyi-1] keyi [keyi+1,end]
		if (keyi + 1 < end)
		{
			STPush(&st, end);
			STPush(&st, keyi + 1);
		}
		if (begin < keyi - 1)
		{
			STPush(&st, keyi - 1);
			STPush(&st, begin);
		}
	}
	STDestroy(&st);
}

在十万个数据下面,快速排序非递归方法走了19ms,在一百万数据下面,走了283ms,可见效率与递归方法的差不多

在这里插入图片描述
在这里插入图片描述

七、归并排序

归并排序的时间复杂度是O(NlongN),空间复杂度是O(N),具有稳定性

在这里插入图片描述

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide
andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序核心步骤:
将数据划分区间,区间大小从小到大,每个区间进行归并,归并完成后就要拷贝回去

在这里插入图片描述

归并递归实现:

void _MergeSort(int* a, int* tmp, int left,int right)
{
	//递归
	if (left >= right)
	{
		return;
	}
	int mid = (left + right) / 2;
	//[left,mid][mid+1,right]
	_MergeSort(a, tmp, left, mid);
	_MergeSort(a, tmp, mid+1, right);
	//归并
	int begin1 = left;
	int end1 = mid;
	int begin2 = mid + 1;
	int end2 = right;
	int i = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	//拷贝
	memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}

//归并排序
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(n * sizeof(int));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	_MergeSort(a, tmp, 0, n - 1);
	free(tmp);
	tmp = NULL;
}

在十万个数据下面,归并排序递归方法走了9ms,在一百万数据下面,走了93ms,可见效率非常快
在这里插入图片描述
在这里插入图片描述

归并非递归实现:

上面我们提到递归会有栈溢出的问题,所有我们可以尝试一下归并的非递归的实现方法

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

这次我们使用循环来实现,归并的核心就是分区间进行排序,既然如此, 我们可以设置分组gap的初始值为1,然后归并一次,归并完成后gap乘以2,来进行下一次的归并区间,不断重复此步骤直到gap 大于等于 数组长度时退出循环

//归并排序 非递归实现
void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	//分组排序 每次两个gap组进行归并排序
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i+=2*gap)
		{
			int begin1 = i;
			int end1 = i + gap - 1;
			int begin2 = i + gap;
			int end2 = i + 2 * gap - 1;
			int j = i;
			//printf("[%d,%d],[%d,%d]", begin1, end1, begin2, end2);
			//如果begin2越界了,就不归并
			if (begin2 >= n)
			{
				break;
			}
			//如果end2越界了,就修正
			if (end2 >= n)
			{
				end2 = n - 1;
			}
			//归并排序
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
				{
					tmp[j++] = a[begin1++];
				}
				else
				{
					tmp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
			//拷贝
			memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));
		}
		gap *= 2;
	}
	free(tmp);
	tmp = NULL;
}

在十万个数据下面,归并排序非递归方法走了9ms,在一百万数据下面,走了87ms,可见效率非常快

在这里插入图片描述
在这里插入图片描述

八、各个排序的对比图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1872724.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CentOS停止维护,如何应对?

一、事件背景 2020年12月08日&#xff0c;CentOS官方宣布了停止维护CentOS Linux的计划&#xff0c;并推出了CentOS Stream项目。 更多信息&#xff0c;请参见CentOS官方公告。 版本变化说明CentOS 9不再支持新的软件和补丁更新CentOS 82021年12月31日停止维护服务CentOS 720…

java简易计算器(多种方法)

parseDouble() 方法属于 java.lang.Double 类。它接收一个字符串参数&#xff0c;其中包含要转换的数字表示。如果字符串表示一个有效的 double&#xff0c;它将返回一个 double 值。 应用场景 parseDouble() 方法在以下场景中非常有用&#xff1a; 从用户输入中获取数字&a…

邮箱接口代码在安全性方面有哪些考虑因素?

邮箱接口代码如何实现&#xff1f;如何编写高效的邮箱接口代码&#xff1f; 邮箱接口代码在现代网络应用中发挥着重要作用&#xff0c;尤其是在处理电子邮件的发送和接收时。确保邮箱接口代码的安全性已成为开发者和企业的首要任务。AoKSend将探讨邮箱接口代码在安全性方面的考…

Talk|CityU 助理教授马佳葳: CVPR 2024, 基于多模态理解的混合数据专家模型

本期为TechBeat人工智能社区第604期线上Talk。 北京时间6月27日(周四)20:00&#xff0c;香港城市大学助理教授—马佳葳的Talk已经准时在TechBeat人工智能社区开播&#xff01; 他与大家分享的主题是: “基于多模态理解的混合数据专家模型”&#xff0c;他向大家介绍了混合数据专…

快递大件多少算超重物品?

在快递大件物品时&#xff0c;我们经常听到“超重”这个词&#xff0c;但究竟多重才算超重呢&#xff1f;今天&#xff0c;就让我们来探讨一下快递大件的超重标准&#xff0c;以及如何更经济地快递这些超重物品。 1. 祺祺寄快递&#xff1a; “祺祺寄快递”是一个便捷的快递服…

完美解决ValueError: column index (256) not an int in range(256)的正确解决方法,亲测有效!!!

完美解决ValueError: column index (256) not an int in range(256)的正确解决方法&#xff0c;亲测有效&#xff01;&#xff01;&#xff01; 亲测有效 完美解决ValueError: column index (256) not an int in range(256)的正确解决方法&#xff0c;亲测有效&#xff01;&…

鉴源实验室·基于MQTT协议的模糊测试研究

作者 | 张渊策 上海控安可信软件创新研究院工控网络安全组 来源 | 鉴源实验室 社群 | 添加微信号“TICPShanghai”加入“上海控安51fusa安全社区” 随着物联网技术的快速发展&#xff0c;越来越多的设备加入到互联网中&#xff0c;形成了庞大的物联网系统。这些设备之间的通信…

快20倍还便宜 NVIDIA GPU的“掘墓人”出现了?

芯片初创公司Etched近日宣布推出了一款针对 Transformer架构专用的AISC芯片 “Sohu”&#xff0c;并声称其在AI大语言模型&#xff08;LLM&#xff09;推理性能方面击败了NVIDIA最新的B200 GPU&#xff0c;AI性能达到了H100的20倍。这也意味着Sohu芯片将可以大幅降低现有AI数据…

【大模型】大模型微调方法总结(四)

1. P-Tuning v1 1.背景 大模型的Prompt构造方式严重影响下游任务的效果。比如&#xff1a;GPT-3采用人工构造的模版来做上下文学习&#xff08;in context learning&#xff09;&#xff0c;但人工设计的模版的变化特别敏感&#xff0c;加一个词或者少一个词&#xff0c;或者变…

MCGS仿真教学3:动画的平移

目录 一、绘制图形和按钮功能二、移动动画三、添加功能变量四、添加循环脚本![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/f42c6b18e1cb4dbf8075c389878d3ae7.gif)五、完成演示 一、绘制图形和按钮功能 全部由单个矩形组成 二、移动动画 三、添加功能变量 四、…

CDGA|数据治理:自上而下与自下而上的双重策略

在数字化时代&#xff0c;数据已经成为企业最宝贵的资产之一。为了充分发挥数据的价值&#xff0c;数据治理成为了企业不可或缺的一环。然而&#xff0c;数据治理并非一蹴而就的过程&#xff0c;它需要综合考虑多个方面&#xff0c;包括组织架构、技术工具、业务流程以及人员培…

阐述以下方法 @classmethod, @staticmethod, @property?

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

【合作ACM出版,稳定EI、Scopus稳定检索】第五届城市工程与管理科学国际会议(ICUEMS 2024,8月2-4)

第五届城市工程与管理科学国际会议&#xff08;ICUEMS 2024&#xff09;将于2024年8月2-4日在天津举行。 会议的目的是为从事城市工程、管理科学相关领域的专家、学者、工程师和技术研究人员提供一个平台&#xff0c;分享科研成果和前沿技术&#xff0c;了解学术发展趋势&…

CSDN原力值涨分规则

CSDN的原力值是指用户在CSDN社区中的影响力和贡献程度的评估指标。原力值是根据用户在CSDN平台上的发表文章、获得的点赞和评论数量、参与的社区活动等多个因素综合计算得出的。较高的原力值意味着用户在CSDN社区中的影响力和知名度较高&#xff0c;其发表的文章和回答的问题可…

DevEco Studio有时会多出来.js和.map文件,导致项目不能运行

1、问题 在使用DevEco的时候有时候会出现啥都没干&#xff0c;但是在项目的目录下会自动生成和文件同名的.js和.js.map文件&#xff0c;至于为什么会生成目前我也不知道&#xff0c;如果想要更深了解可以到论坛讨论&#xff1a;华为开发者论坛。生成.js和.js.map文件优…

2023年第十四届蓝桥杯JavaB组省赛真题及全部解析(下)

承接上文&#xff1a;2023年第十四届蓝桥杯JavaB组省赛真题及全部解析&#xff08;下&#xff09;。 目录 七、试题 G&#xff1a;买二赠一 八、试题 H&#xff1a;合并石子 九、试题 I&#xff1a;最大开支 十、试题 J&#xff1a;魔法阵 题目来自&#xff1a;蓝桥杯官网…

嵌入式Linux系统编程 — 4.5 strcmp、strchr 等函数实现字符串比较与查找

目录 1 字符串比较 1.1 strcmp() 函数 1.2 strncmp() 函数 1.3 示例程序 2 字符串查找 2.1 strchr() 函数 2.2 strrchr() 函数 2.3 strstr() 函数 2.4 strpbrk() 函数 2.5 示例程序 1 字符串比较 strcmp() 和 strncmp() 函数是C语言标准库中用于比较两个字符串的函…

Node.js实验指南:完善接口服务器

上一章接口服务器&#xff0c;我们实现了一个异常简单的接口服务器。可能很多人会感觉有点不真实的感觉&#xff0c;接口这么简单吗&#xff1f;没错&#xff0c;就这么简单。 我们在真实项目的前后端对接中&#xff0c;调用接口&#xff0c;拿到数据&#xff0c;就是如此而已…

20240624(周一)AH股行情总结:A股低开低走, 恒生科技指数跌2%,贵州茅台转跌为涨

内容提要 A股三大指数收盘均跌超1%&#xff0c;半导体、智慧医疗、商业航天概念领跌&#xff0c;中芯国际跌超3%&#xff0c;盘中一度涨2%。水电股逆势走强&#xff1b;白酒股低开高走&#xff0c;贵州茅台翻红&#xff0c;盘初曾跌3%。微盘股指数大跌4%。 正文 周一&#x…

社区便民团购小程序源码系统 前后端分离 带完整源代码包以及搭建部署教程

系统概述 随着移动互联网的快速发展&#xff0c;社区团购凭借其便利性、优惠性逐渐走进人们的生活&#xff0c;成为了日常生活不可或缺的一部分。为了满足市场对此类服务的需求&#xff0c;我们特别推出了一款社区便民团购小程序源码系统&#xff0c;该系统采用前后端分离架构…