240627_关于CNN中图像维度变化问题

news2025/1/12 13:26:41

240627_关于CNN中图像维度变化问题

在学习一些经典模型时,其中得维度变化关系总搞不太明白,集中学习了以下,在此作以梳理总结:

一般来说涉及到的维度变换都是四个维度,当batch size=4,图像尺寸为640*640,RGB三通道时,此时维度就是4×3×640×640。3的意思是RGB三通道,如果你传入的图像是单通道图像,此时维度就是4×1×640×640。

当然有些图你看着是一个黑白图,但是他还是有可能是一张RGB三通道图,具体怎么区分呢。右击图片打开属性,打开详细信息,里面可以看到位深度,位深度为24,则为RGB图,位深度为8,则为单通道图。此处就是一个坑,图像分割任务中,标签往往是单通道图,但是有时从网上找到的数据集看起来是黑白的,但是实际训练就会报错,查看了才发现位深度是24,需要用python代码进行修改,具体跳转240627_图像24位深度(RGB图)转为8位深度(单通道图)-CSDN博客。

当维度是三维时,就是没有batch size这个维度,可以理解为这个维度指的是其中一张图。

标准卷积

以U_Net为例

在这里插入图片描述

# U_Net网络的简单结构,就写了一层,其他同理
block1=block_down(3,64)
x1_use=block1(x) # torch.Size([3, 64, 568, 568])
x1=self.maxpool(x1_use) # torch.Size([3, 64, 284, 284])

'''
block down中卷积核的定义为
self.conv1 = nn.Conv2d(inp_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
self.conv2 = nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1,padding_mode='reflect')
'''

卷积输出的计算公式为

h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightinheightkernel+2padding)+1

w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthinwidthkernel+2padding)+1

输入3张572572的RGB图像(3×3×572×572),经过3×3卷积(padding=0,stride=1),此时的计算公式为
h e i g h t o u t = w i d t h o u t = ( 572 − 3 + 2 ∗ 0 ) 1 + 1 = 570 height_{out}=width_{out}=\frac{(572-3+2*0)}{1}+1=570 heightout=widthout=1(5723+20)+1=570
一共经过两层之后尺寸为568
568,因为kernel的out_channel定义的是64,所以一共有64个卷积核,输出通道为64,此时维度为3×64×568×568。

然后经过最大池化层,尺寸除以2,通道数不变,此时维度为3×64×284×284

其余层数同理

batch_sizeheightwidthin_channelout_channel
Input35725723
Kernel33364
Output357057064

1×1卷积

以ResNet50为例

image-20240627202246263

我们看shortcuts分支(右半弧线分支),这个分支输入一张维度为1×256×56×56的图像,经过一个1×1卷积(stride=2,padding=0),此时经过上述公式计算,尺寸为28,输出通道数为512。

batch_sizeheightwidthin_channelout_channel
Input15656256
Kernel11256512
Output12828512

当然也有特殊情况,1×1卷积,卷积核尺寸为1,步长为1,padding=0,通过以上公式可以计算出来尺寸不会发生变化,但通道数可以发生改变,由卷积核数量决定。

全连接层

全连接层就是把所有的像素点都摊开,摊成尺寸为1×1,通道数好多好多,其卷积核尺寸和输入尺寸一致,输出 通道数就是卷积核个数

batch_sizeheightwidthin_channelout_channel
Input15656256
Kernel5656256512
Output111512

总结

输出通道数就是卷积核个数

卷积后尺寸计算公式就是

h e i g h t o u t = ( h e i g h t i n − h e i g h t k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 height_{out}=\frac{(height_{in}-height_{kernel}+2*padding)}{stride}+1 heightout=stride(heightinheightkernel+2padding)+1

w i d t h o u t = ( w i d t h i n − w i d t h k e r n e l + 2 ∗ p a d d i n g ) s t r i d e + 1 width_{out}=\frac{(width_{in}-width_{kernel}+2*padding)}{stride}+1 widthout=stride(widthinwidthkernel+2padding)+1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1871773.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

正点原子 iwdg wwdg timr

这个iwdg 的超时时间的计算公式 ———————————————— wwdg 超时时间的计算公式 4096是stm32固定死的 wwdg的时钟频率是36mhz,因为apb1分频2得到wwdg的时钟频率,这个是stm32自己就这样做的 看cubemx的时钟图也看得出来 iwdg和wwdg的区分 ti…

[Java基础揉碎]反射

目录 引出反射机制​编辑 介绍反射机制​编辑 反射的优点和缺点 (反射调用优化 )​编辑 Class类 class常用方法 ​编辑 ​编辑 获取class类对象的不同方式 哪些类型有class对象 ​编辑 类加载 ​编辑类加载流程图 类加载的五个阶段 ​编辑 通过反射获取类的结构信…

合芯科技冯春阳博士受邀出席苏州大学技术分享会

近日,苏州大学电子信息学院与合芯科技苏州公司成功举办“新时代与‘芯’相遇,科技赋能向未来”的技术分享会。合芯科技冯春阳博士进行了主题为“高性能CPU关键技术与发展现状”的专题分享,并参加导师聘请仪式。苏州大学电子信息学院党委副书记…

【ONLYOFFICE 8.1】的安装与使用——功能全面的 PDF 编辑器、幻灯片版式、优化电子表格的协作

🔥 个人主页:空白诗 文章目录 一、引言二、ONLYOFFICE 简介三、安装1. Windows/Mac 安装2. 文档开发者版安装安装前准备使用 Docker 安装使用 Linux 发行版安装配置 ONLYOFFICE 文档开发者版集成和开发 四、使用1. 功能全面的 PDF 编辑器PDF 查看和导航P…

如何做好新闻软文宣发媒体资源筛选?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 媒体宣传加速季,100万补贴享不停,一手媒体资源,全国100城线下落地执行。详情请联系胡老师。 新闻软文宣发是指企业通过创造或利用新闻事件&#xff0c…

使用systemd管理Linux下的frps服务:安装、配置及自动化操作指南

在 Linux 系统下,使用 systemd 可以方便地控制 frps 服务端的启动、停止、配置后台运行以及开机自启动。以下是具体的操作步骤: 1. 安装 systemd 如果您的 Linux 服务器上尚未安装 systemd,可以使用包管理器如 yum(适用于 Cent…

stm32 No traget connected/debug识别不到串口的问题

关于stm32串口识别不到,第一步先确定是否线接错(stlink与stm32接口对应),如果确认接线没有问题的话,可以使用以下方法,成功率较高。 首先将stlink的boot0置1,就是把跳线帽换到高电平这一侧&…

[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式4599张2类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4599 标注数量(xml文件个数):4599 标注数量(txt文件个数):4599 标注…

编写一个基于其他系的linux系统并且把它打包为一个iso镜像思想

目录 前面写的一篇文章 前言 isolinux引导模式启动流程 为什么要initramdisk操作而不直接加载文件系统 编写系统的思想 可能问题 一般的iso镜像目前只支持最大4G的大小,需要怎么解决? 如何去找驱动 木木em哈哈想说的话(与本博文无光&…

详细分析SpringBootTest中的测试类(附Demo)

目录 前言1. 基本知识2. Demo3. 实战3.1 项目测试3.2 功能测试 前言 书写测试类,一般只需要加入Test即可,但是结合Springboot项目来整体测试对应需要怎么下手 详细的Java知识点推荐阅读:java框架 零基础从入门到精通的学习路线 附开源项目面…

[CAN] 通讯协议手动解析与手动打包 [手撕编码格式]

手动解析与手动打包 一、Intel格式编码1.1 报文解析。1.2 报文打包二、Motorola格式通讯协议2.1 报文解析。2.2 报文打包🙋 前言 CAN有两种编码格式:Intel编码格式 和 Motorola编码格式,本教程将分别对两种格式进行手动解析与手动打包。 一、Intel格式编码 假设已知雷达CAN…

【C++题解】1721. 输出个位为5或者个位为8数

问题:1721. 输出个位为5或者个位为8数 类型:简单循环 题目描述: 请从小到大输出 1∼n 中所有个位为 5 或者个位为8 的所有的整数,每行 1 个。 比如,假设 n20,那么满足条件的数输出如下: 5 8 1…

【多线程】如何解决线程安全问题?

🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. synchronized 关键字1.1 锁是什么1.2 如何加锁1.3 synchronized 修饰方法1) 修饰普通成员方法2) 修饰静态…

Rust 程序设计语言学习——泛型、Trait和生命周期

每一种编程语言都有高效处理重复概念的工具。在 Rust 中其工具之一就是泛型。泛型是具体类型或其他属性的抽象替代。 Trait 定义了某个特定类型拥有可能与其他类型共享的功能。可以通过 Trait 以一种抽象的方式定义共同行为。可以使用 trait bounds 指定泛型是任何拥有特定行为…

Java——IO流(一)-(8/8):释放资源-try-catch-finally、try-catch-resource

目录 try-catch-finally 介绍 实例演示1 实例演示2 try-catch-resource 介绍 实例演示 try-catch-finally 介绍 普通的释放流的方法可能会因中间的异常或是其他原因,导致程序执行不到释放流的代码就结束了,会有资源浪费的风险,所以建…

入门JavaWeb之 JavaBean 实体类

JavaBean 有特定写法: 1.必须有一个无参构造 2.属性必须私有 3.必须有对应的 get/set 方法 一般用来和数据库的字段做映射 ORM:对象关系映射 表->类 字段->属性 行记录->对象 连接数据库 没有的话去 Settings -> Plugins 搜索 Data…

JavaScript--js基础(详细 全面)

目录 前言: JavaScript 是什么?JavaScript 简介 1.JavaScript历史 2.JavaScript 具有以下特点 第一个JavaScript程序 1.在脚本文件中编写JavaScript代码 2.JavaScript代码执行顺序 基本语法 1.变量 2.数据类型 3.算术运算符 4.赋值运算 5.字符串运算符 6…

GoSync+华为智能穿戴使用指导

GoSync官方简介: GoSync 是一款免费应用程序,主要用于将您的可穿戴设备中的步行、跑步、骑自行车和游泳等活动数据同步到您的 Google Fit 和其他健身平台。在开始同步数据之前,您需要将您的可穿戴设备账户与您的健身平台账户连接起来。在创建…

Modbus为何要转成EtherCAT

1. Modbus是什么? Modbus是一种工业通信协议,广泛应用于工业自动化领域。它支持多种通信方式,包括RS-232、RS-485和TCP/IP等。Modbus协议简单易用,能够实现设备之间的数据交换和控制命令的传输。然而,它在数据传输速率…

微软推出最新视觉基础模型Florence-2 可在浏览器运行

据微软官方消息,微软推出视觉基础模型Florence-2,该模型现已能够在支持WebGPU的浏览器中100%本地运行。Florence-2-base-ft是一个拥有2.3亿参数的视觉基础模型,采用基于提示的方法来处理广泛的视觉和视觉语言任务。 该模型支持多种功能&…